

Hydrogeological Assessment

Planning Proposal at 196 Old Main Road; 263, 269, 271, 273, 293 & 321 Gan Gan Road, Anna Bay NSW

Final Report

P2208888JR10V02 December 2024 Prepared for AB Rise Pty Ltd

environmental science & engineering

Project Details

Report Title Hydrogeological Assessment: Planning Proposal at 196 Old Main Road; 263, 269, 271, 273, 293 & 321 Gan Gan

Road, Anna Bay NSW

Client AB Rise Pty Ltd

Document P2208888JR10V02

Director Dr Daniel Martens

Manager Mo Shahrokhian

Principal Author Dean Shi

Document History

Issue	Issue Date	Status	Description / Comment	Author	Reviewer	Approved
1	13/12/2024	Final	For Planning Proposal	DS	JF	MS

© Copyright Martens & Associates Pty Ltd Suite 201, 20 George St, Hornsby, NSW 2077, Australia ACN 070 240 890 ABN 85 070 240 890 P +61-2-9476-9999 | mail@martens.com.au | www.martens.com.au

Copyright Statement

Martens & Associates Pty Ltd (Publisher) is the owner of the copyright subsisting in this publication. Other than as permitted by the Copyright Act and as outlined in the Terms of Engagement, no part of this report may be reprinted or reproduced or used in any form, copied or transmitted, by any electronic, mechanical, or by other means, now known or hereafter invented (including microcopying, photocopying, recording, recording tape or through electronic information storage and retrieval systems or otherwise), without the prior written permission of Martens & Associates Pty Ltd. Legal action will be taken against any breach of its copyright. This report is available only as book form unless specifically distributed by Martens & Associates in electronic form. No part of it is authorised to be copied, sold, distributed or offered in any other form.

Contents

1	Introdu	uction5
	1.1	Overview5
	1.2	Proposal5
	1.3	Scope of Works6
2	Site Ba	ckground Information7
	2.1	Site Details7
	2.2	Site Conditions7
	2.3	Nearby Groundwater Users8
	2.4	Environmental Mapping8
3	Ground	dwater Monitoring9
	3.1	Monitoring Methodology9
	3.2	Monitoring Results9
	3.3	Hydraulic Conductivity16
	3.4	Groundwater Quality Testing16
	3.4.1	Testing Methodology
	3.4.2	Testing Results
4	Impact	: Assessment
	4.1	Hazard Identification and Mitigation18
	4.2	Risk Assessment Methodology21
	4.3	Risk Evaluation22
5	Conclu	sions and Recommendations 23
6	Refere	nces
Ар	pendix A	a – Proposed Masterplan25
Ар	pendix B	3 – Stormwater Management Strategy28
Ар	pendix C	- Site Maps 30
Ар	pendix D	- Well Construction Logs35
Ар	pendix E	- Slug Test Results
Ар	pendix F	- Laboratory Summary Table 80
Ар	pendix G	i – Laboratory Documentation82

Tables

	Table 1: Site details
	Table 2: Site Conditions
	Table 3: Registered bores within 1km of site boundary.
	Table 4: Summary of monitoring well levels9
	Table 5: Statistical summary of monitoring results in mAHD (7/12/2022 – 27/11/2024). 10
	Table 6: Statistical summary of monitoring results in mbgl (7/12/2022 – 27/11/2024)10
	Table 7: Saturated hydraulic conductivity test results. 16
	Table 8: Potential groundwater hazards and impact mitigation measures. 18
	Table 9: Adopted hazard consequence definitions
	Table 10: Adopted hazard likelihood definitions
	Table 11: Adopted risk definitions22
	Table 12: Risk assessment outcomes. 22
Fig	ures
	Figure 1: Plot of groundwater level data from MWs installed south of the sand dune (mAHD)12
	Figure 2: Plot of groundwater level data from MWs installed north of the sand dune (mAHD)
	Figure 3: Plot of groundwater depth data from MWs installed to the south of the sand dune (mbgl)14
	Figure 4: Plot of groundwater depth data from MWs installed to the north of the sand dune (mbgl)

1 Introduction

1.1 Overview

This report documents a Hydrogeological Assessment (**HA**) completed by Martens and Associates Pty Ltd (**MA**) on behalf of AB Rise Pty Ltd (the **Client**) to support a planning proposal (**PP**) for the rezoning of land located at 196 Old Main Road, and 263, 269, 271, 273, 293 & 321 Gan Gan Road, Anna Bay (collectively the **Site**) for residential purposes.

We note that there is an area in the southern portion of 293 and 321 Gan Gan Rd which is subject to an existing development application (**DA**). This small portion of the Site is currently zoned residential (R2) and is not included as part of this PP.

1.2 Proposal

Pursuant to the *Port Stephens Local Environmental Plan 2013* (**PS LEP**) the majority of the Site is currently zoned as RU2 Rural Landscape, with portions of 293 and 321 Gan Gan Road zoned as R2 Low Density Residential and C3 Environmental Management.

The PP proposes the rezoning of the entire Site to a mixture of R2 Low Density Residential, C3 Environmental Management, and RE1 Public Recreation.

The proposed masterplan (BKA Architecture, 2024, provided in Appendix A) indicates that the future development will involve:

- Subdivision of the Site into 476 lots for residential use.
- Construction of an internal access road network.
- Installation of associated services.
- Implementation of flood mitigation and drainage infrastructure.
- New public reserves comprising areas of existing bushland and rehabilitated / reforested areas.

MA understands that that the following earthworks are anticipated to be undertaken at the Site:

- Filling of up to approximately 2 3 m above existing ground level within proposed lots and roadways.
- Excavation of up to approximately 2.2 m in a small aera in the southeastern portion of the Site.
- Excavation up to approximately 2.5 mbgl for the widening of the existing drainage channel while maintaining the current base level.
- Construction of several stormwater basins across the Site to base levels of approximately –0.1 mAHD.

The locations of proposed basins are shown in the Stormwater Management Strategy prepared by MA (2024, ref. P208888MS16), included as Appendix B.

1.3 Scope of Works

The scope of this HA is outlined as follows:

- Review available Site information including topography, geology and soil landscape mapping.
- Installation of 13 groundwater monitoring wells (MWs) being MW01 MW13 and one surface water monitoring station (SW01) at the Site. We note that MW03, MW06 and MW07 were installed on the DA site concurrently with the PP investigation. The data from these 3 MWs has been included in this assessment to add to the understanding of groundwater conditions.
- Continuous monitoring of groundwater levels and barometric pressure using data loggers recording at 15 minute intervals.
- Completion of rising / falling head slug tests to assess aquifer permeability characteristics.
- Collection and analysis of groundwater samples to assess groundwater quality.
- Review of nearby mapped sensitive environments including groundwater dependent ecosystems (**GDE**) and wetland areas.
- Assessment of likely groundwater impacts arising from the proposed development, and where required, provide recommendations for additional assessment / management measures.

2 Site Background Information

2.1 Site Details

Site details are summarised in Table 1.

Table 1: Site details.

Item	Description
Legal identifiers	Lot 963 in DP 731955 (196 Old Main Road, Anna Bay).
	Lot 21 in DP 590387 (263 Gan Gan Road, Anna Bay).
	Lot 23 in DP 590387 (269 Gan Gan Road, Anna Bay).
	Lot 1 in DP 536752 (271 Gan Gan Road, Anna Bay).
	Lot 901 in DP436550 (273 Gan Gan Road, Anna Bay).
	Lot 902 in DP 634550 (293 Gan Gan Road, Anna Bay).
	Lot 1 in DP 503876 (321 Gan Gan Road, Anna Bay).
Total surveyed lot area	Approximately 118.7 ha.
PP Site area	Approximately 114.1 ha
Local Government Area	Port Stephens Council (PSC)

2.2 Site Conditions

Site conditions at the time of reporting are summarised in Table 2

Table 2: Site Conditions.

Item	Description			
Site description	The Site predominantly consists of rural pasture and dense vegetation, with existing residences on each lot with associated infrastructure including sheds, driveways / access tracks, services and fences.			
Surrounding land description	Bushland and residential pasture to the north and west, low density residential to the east, and high density residential and bushland to the south.			
Topography	 Site topography is characterised by three primary morphological units: Sand dune – an elongated east to west aligned sand dune is located near the southern Site boundary, reaching elevations of around 20 – 23 mAHD. Low lying land – land to the north of the sand dune is low lying and relatively flat, with elevations ranging between 1 – 2 mAHD. Valley area – a narrow strip of land (a trapped low dune hollow) is located between the sand dune and Gan Gan Road to the south and ranges in elevation between 5 – 7 mAHD. 			
Geology	The Site contains three geological units broadly aligning with previously described morphological units. These are: • Dune Facies (QP-bd) – Holocene aged coastal dune facies located over the sand dune.			

Item	Description
	 Estuarine Plain (QH-es) – Holocene aged estuarine plain sediments including marine and fluvial sands, silts, clays, shell and peat located over the low lying area to the north of the sand dune.
	Dune Hollow (QP-brs) – Quaternary or Holocene aged beach ridge swale and dune deflation hollow located over the valley area.
Soil Landscape	Three soil landscapes occupy the Site, broadly aligning with previously described morphological units. These are:
	Shoal Bay Variant A (sba) – comprising very deep (>5m) well drained soils consisting of primarily loose dune sand, located over the sand dune.
	Bobs Farm (bf) – comprising up to 0.3 m of organic loam overlying 0.2 to over 0.8 of estuarine clays with interspersed shells, located over the low lying area to the north of the sand dune.
	• Shoal Bay (sb) – comprising deep (>3m) well trained soils consisting of primarily loose sand sheets, often overlying a 1.5 m layer of organic and iron stained sands, located over the valley area.
Acid Sulfate Soils	The PSLEP acid sulfate soils (ASS) planning map indicates that the majority of the Site is Class 3 land, with a small portion of the Site along Gan Gan Road mapped as Class 4 land.
	MA have completed an ASS Assessment (MA, 2023, ref. P2208888JR07V01) which identifies ASS risk associated with the proposed development (particularly due to excavation and drainage modification works) and recommends a number of mitigation measures to manage these risks.

2.3 Nearby Groundwater Users

The Bureau of Meteorology (BoM) Australian Groundwater Explorer (2023) identifies four registered groundwater bores located within 500 m of the site boundary, including one water supply bore. Bore locations are shown in Appendix C Map 02 and summarised in Table 3.

Table 3: Registered bores within 1km of site boundary.

Well ID	Distance from Site Boundary (m)	Direction from Site	Purpose
GW202232	52	Southwest	Water Supply
GW079214	211	Southwest	Unknown
GW080083	314	Southwest	Monitoring
GW080359	349	Southwest	Monitoring

2.4 Environmental Mapping

A review of the NSW Government *HEVAE Vegetation Groundwater Dependent Ecosystems Value* mapping identifies several medium to high value GDEs within the Site. These are shown in Appendix C Map 03.

The State Environmental Planning Policy (Resilience and Hazards) 2021 (SEPP 2021) does not identify any coastal wetlands or coastal wetland proximity areas within the Site boundary. The nearest coastal wetland identified in SEPP 2021 is located approximately 600 m to the northeast of the Site.

3 Groundwater Monitoring

3.1 Monitoring Methodology

Monitoring was completed using data loggers installed in each MW location, recording at 15 minute intervals. Groundwater monitoring commenced on 7 December 2022 at MW01 – MW07 and 16 February 2023 at MW08 – MW13 and SW01.

Well construction details are summarised in Table 4, and well locations and construction logs are provided in Appendix C Map 04 and Appendix D, respectively.

Table 4: Summary of monitoring well levels.

MWID	Correct Level (or AUD) A	Well Ba	se Level
MW ID	Ground Level (mAHD) [^]	mbgl	mAHD
MW01	4.31	5.80	-1.49
MW02	1.74	4.10	-2.36
MW03	4.82	5.60	-0.78
MW04	2.17	4.01	-1.84
MW05	1.85	4.36	-2.51
MW06	4.7	5.47	-0.77
MW07	5.39	5.38	0.01
MW08	0.69	4.11	-3.42
MW09	0.73	4.11	-3.38
MW10	0.98	4.12	-3.14
MW11	1.14	3.23	-2.09
MW12	0.94	3.08	-2.14
MW13	0.84	4.15	-3.31

[^] From survey of wells (TSS, 2023)

3.2 Monitoring Results

The following observations were made based on monitoring results:

- Groundwater levels were generally reflective of surface topography, tending to be deeper in MWs near the sand dune and in the southern valley area, and shallower (< 0.5 mbgl) in the low lying land to the north of the dune.
- Rainfall response was observed to vary depending on location within the Site, due to differences in soil type, land use and ground elevation:
 - Groundwater levels in MWs installed to the north of the sand dune (MW02, MW04, MW05, MW08 – MW13) were observed to fluctuate rapidly

- in response to rainfall. The rate of fluctuation was generally lower in wells located closer to the sand dune.
- Groundwater in the MW installed to the south of the sand dune (MW01, MW03, MW06 and MW07) displayed a relatively delayed response to heavier rainfall, with minimal fluctuations observed following minor rainfall events.

Summaries of monitoring data collected from 7 December 2022 to 27 November 2024 are provided in the following tables and figures.

Table 5: Statistical summary of monitoring results in mAHD (7/12/2022 – 27/11/2024).

MW ID	Minimum	25 th %ile	Median	Mean	75 th %ile	Maximum	Range
MW01	0.31	0.74	0.98	1.01	1.18	2.10	1.79
MW02	0.17	0.60	0.85	0.81	1.04	1.32	1.14
MW03	0.57	1.23	2.02	2.12	2.99	3.93	3.36
MW04	0.27	0.72	1.04	1.01	1.31	1.63	1.37
MW05	0.05	0.60	0.88	0.85	1.13	1.67	1.61
MW06	0.35	0.97	1.63	1.71	2.39	3.28	2.93
MW07	0.20	0.69	1.09	1.11	1.51	2.02	1.82
MW08	-0.32	0.00	0.34	0.30	0.53	1.03	1.35
MW09	-0.05	0.22	0.51	0.46	0.65	1.05	1.10
MW10	-0.01	0.39	0.56	0.53	0.68	1.12	1.13
MW11	0.29	0.71	0.93	0.90	1.08	1.48	1.19
MW12	-0.24	0.16	0.42	0.42	0.71	1.04	1.28
MW13	-0.18	0.18	0.41	0.39	0.58	1.05	1.23
SW01	-0.50	-0.31	-0.17	-0.14	-0.03	0.74	1.24

Table 6: Statistical summary of monitoring results in mbgl (7/12/2022 – 27/11/2024).

MW ID	Minimum	25 th %ile	Median	Mean	75 th %ile	Maximum	Range
MW01	4.00	3.57	3.33	3.30	3.13	2.21	1.79
MW02	1.57	1.14	0.89	0.93	0.70	0.42	1.14
MW03	4.25	3.59	2.80	2.70	1.83	0.89	3.36
MW04	1.90	1.45	1.13	1.16	0.86	0.54	1.37
MW05	1.80	1.25	0.97	1.00	0.72	0.18	1.61
MW06	4.35	3.73	3.07	2.99	2.31	1.42	2.93
MW07	5.19	4.70	4.30	4.28	3.88	3.37	1.82
MW08	1.01	0.69	0.35	0.39	0.16	0.34	1.35
MW09	0.78	0.51	0.22	0.27	0.08	0.32	1.10

MW ID	Minimum	25 th %ile	Median	Mean	75 th %ile	Maximum	Range
MW10	0.99	0.59	0.42	0.45	0.30	0.14	1.13
MW11	0.85	0.43	0.21	0.24	0.06	0.34	1.19
MW12	1.18	0.78	0.52	0.52	0.23	0.10	1.28
MW13	1.02	0.66	0.43	0.45	0.26	0.21	1.23
SW01	1.57	1.38	1.24	1.21	1.10	0.33	1.24

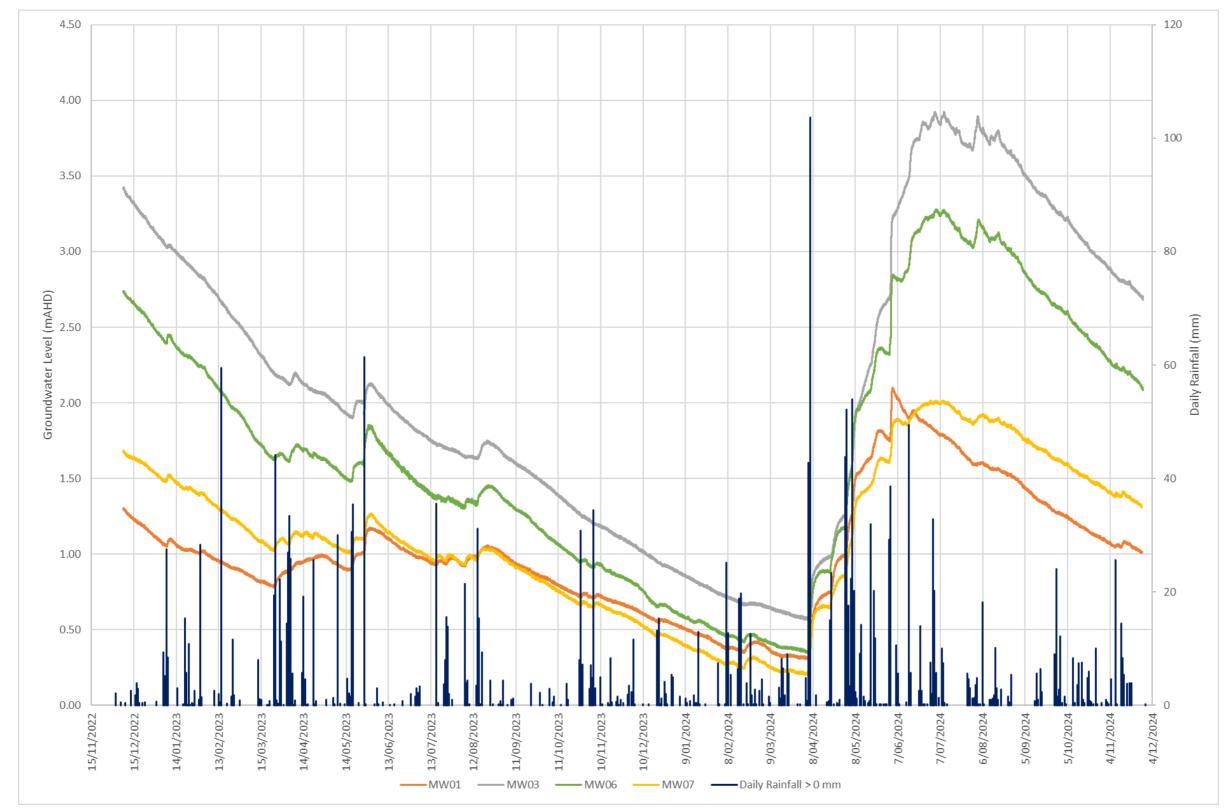


Figure 1: Plot of groundwater level data from MWs installed south of the sand dune (mAHD).

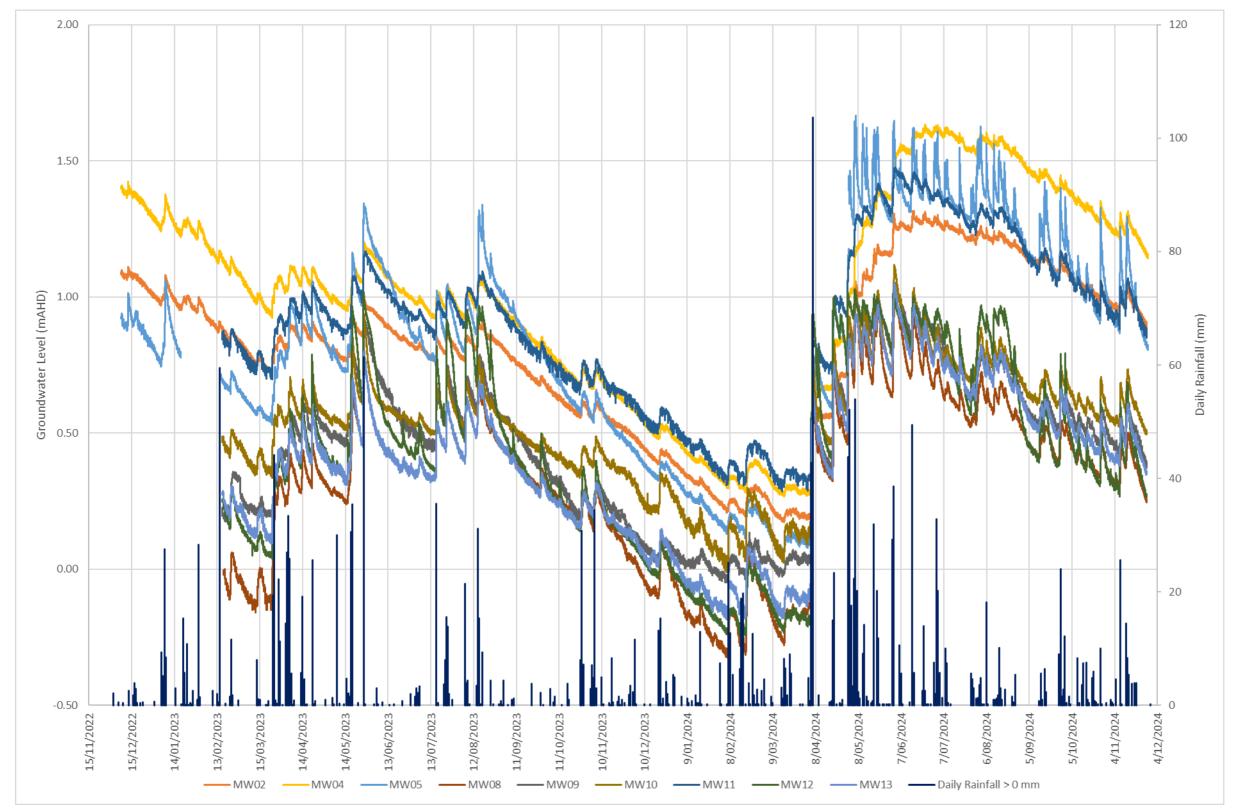


Figure 2: Plot of groundwater level data from MWs installed north of the sand dune (mAHD).

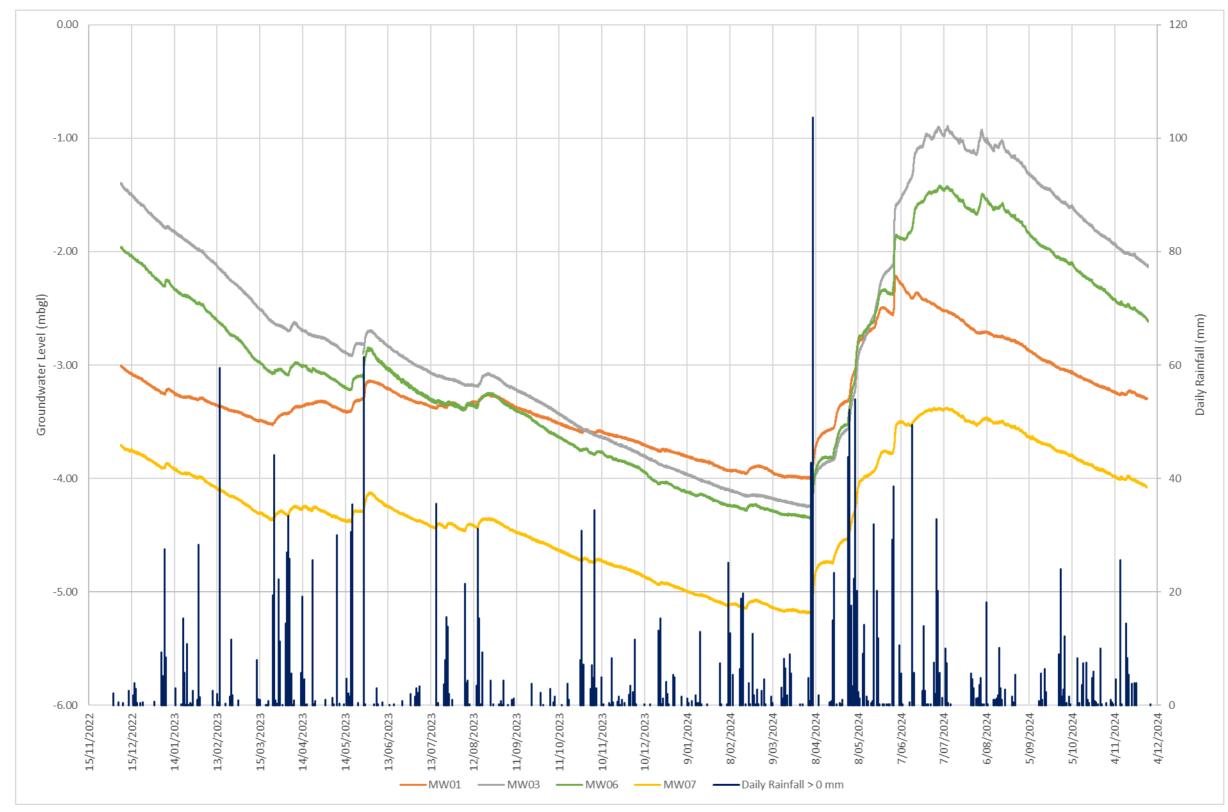


Figure 3: Plot of groundwater depth data from MWs installed to the south of the sand dune (mbgl).

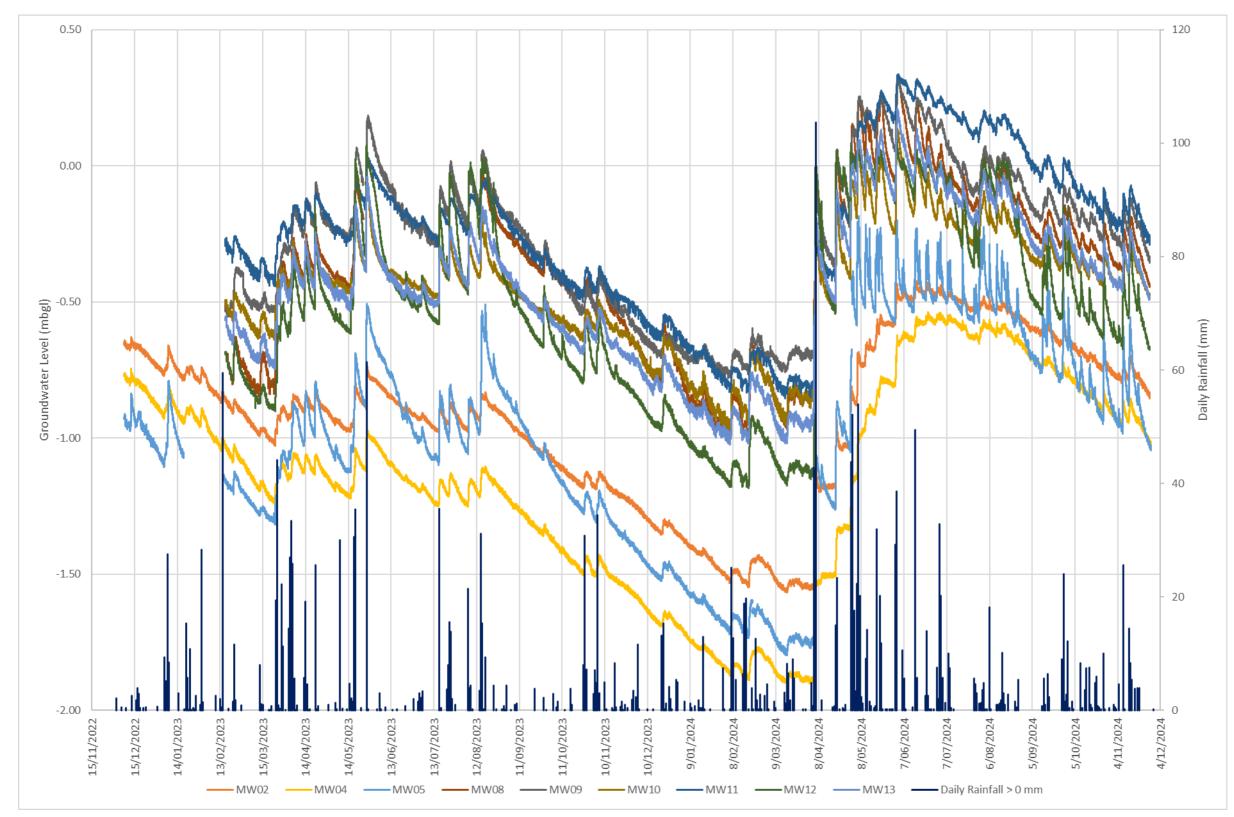


Figure 4: Plot of groundwater depth data from MWs installed to the north of the sand dune (mbgl).

3.3 Hydraulic Conductivity

Rising / falling head tests were conducted to determine saturated hydraulic conductivity (K_{sat}), with duplicate testing completed to provide consistency. K_{sat} results were variable between wells but generally consistent with typical values found in encountered alluvial / marine sands and clays at each monitoring well location.

Results of K_{sat} testing are summarised in Table 7 and calculation sheets are provided in Appendix E.

Table 7: Saturated hydraulic conductivity test results.

MW ID	Screened Material	Test A (m/day)	Test B (m/day)	Test C (m/day)
MW01	Sand (fine – medium)	6.17	6.56	6.52
MW02	Sand (medium – coarse)	22.36	-	-
MW03	Sand (fine – medium)	5.14	6.09	6.95
MW04	Sand (medium – coarse)	20.40	26.86	18.83
MW05	Sand (fine – medium)	7.83	8.15	-
MW06	Sand (fine – medium)	5.96	7.07	6.84
MW07	Sand (fine – medium)	1.83	4.64	4.54
MW08	Clay	0.0062	0.0065	-
MW09	Clay	0.077	0.072	-
MW10	Clay	1.34	1.30	-
MW11	Sand / Clay	10.51	10.04	-
MW12	Sand (fine – medium)	6.81	7.27	-
MW13	Sand (fine – medium)	4.93	4.76	-

3.4 **Groundwater Quality Testing**

3.4.1 Testing Methodology

Groundwater quality testing was undertaken on 14 December 2022 (for MW01 – MW07) and 14 February 2023 (For MW08 – MW13 & SW01). Wells were purged prior to sampling and all samples were immediately sealed in laboratory provided sampling bottles with appropriate preservatives and no headspace.

Samples were submitted to a NATA accredited laboratory (Envirolab Pty Ltd) and tested for:

- pH
- Electrical conductivity (EC)
- Ionic balance

• Dissolved heavy metals (As, B, Be, Ba, Cd, Cr, Cu, Co, Mn, Mo, Se, Sn, Ag Pb, Hg, Ni and Zn)

3.4.2 Testing Results

Laboratory testing results are summarised in Appendix F, and full laboratory documentation is provided in Appendix G. The following observations were made:

- Site groundwater is fresh to slightly brackish, with EC ranging from 100 μ S/cm 1,600 μ S/cm (Mayer *et al.*, 2005).
- Site groundwater is slightly acidic to neutral, with pH ranging from 4.9 6.9.
- Site groundwater generally contained low levels of dissolved heavy metals, except for aluminium (range of <0.01 mg/L – 0.26 mg/L), copper (range of <0.001 – 0.006) and zinc (range of 0.003 – 0.039 mg/L), which exceeded testing criteria for adopted from the AZNG (2018) 95% default guideline values for fresh water.

4 Impact Assessment

4.1 Hazard Identification and Mitigation

Potential groundwater hazards, pathways to these hazards and recommended impact mitigation measures are outlined in Table 8. Key potential groundwater hazards are summarised as:

- 1. Contamination of groundwater.
- 2. Water quality degradation from disturbance of ASS.
- 3. Loss of groundwater resource.
- 4. Degradation of GDEs.
- 5. Loss of yield to other groundwater users.

Table 8: Potential groundwater hazards and impact mitigation measures.

Item	Hazard	Hazard Pathway	lmį	pact Mitigation Measures
1	Groundwater contamination	Contaminated stormwater released to groundwater	1.	Internal access and hardstand areas to be designed and constructed in accordance with accepted engineering practice and guidelines.
			2.	Internal access and hardstand to be maintained to prevent erosion and ensure trafficability.
			3.	Capture and treat all surface water to appropriate standards within a formal stormwater management system.
		Wastewater discharged to groundwater	1.	All sewer systems shall be designed to the relevant engineering standards.
				All sewer systems to be certified by installer and engineer to be compliant with relevant standards following construction.
			3.	Implement low pressure sewer system in areas of shallow groundwater.
			4.	Obtain approvals for all sewage treatment systems in accordance with s68 of the <i>Local Government Act</i> .
			5.	Engineering certification following construction that all sewage treatment systems have been built in accordance with the s68 approval.
			6.	Operate all sewage treatment systems in accordance with the relevant s68 approval(s) and manufacturers requirements.
		Sediment contamination caused	1.	Implement curtain ring fence around excavation area to limit movement of sediment.
		by proposed channel widening excavations	2.	Monitor groundwater up / down slope of excavation area.

Item	Hazard	Hazard Pathway	Impact Mitigation Measures				
2	Groundwater Quality Degradation from ASS	Temporary lowering of groundwater table from excavation	1.	Minimise temporary dewatering for construction of basins and channel widening (restrict mechanised pumping where possible).			
			2.	Dewatering to be limited to removal of saturated soils for the channel widening and basins only.			
			3.	Where soils below the water table require excavation, ensure they are drained prior to removing from the area for treatment under an ASS management plan (ASSMP).			
		Lowering of groundwater table from development	1.	Minimise extent of urban footprint (noting approximately 50% of the Site area north of the sand dune is proposed to be zoned for urban development).			
			2.	Design gravity drainage infrastructure (pits / pipes) to be above the long term average water table.			
			3.	Design integrated water sensitive urban design principals (such as unlined grassed swales and basins) to ensure groundwater recharge occurs in development footprint areas.			
			4.	Implement surface water and groundwater monitoring plan.			
			5.	Stage the development.			
		Leaching from excavated ASS treatment	1.	Excavation of ASS is to be managed and treated in accordance with an ASSMP prepared in accordance with current guidelines.			
			2.	All leachate from ASS treatment areas is to be collected, treated and validated prior to being discharged.			
3	Loss of groundwater resource	Proposed excavations for basin construction and channel widening intersect and drain	1.	Complete excavations with conventional earthmoving equipment with no mechanical dewatering.to limit potential impact on groundwater receptors			
		groundwater	2.	Where excavation occurs below the groundwater table, allow excavated soils to adequately drain back into excavation prior to stockpiling.			
			3.	Any residual leachate from stockpiled material to be appropriately collected, treated and validated prior to discharge back into excavation.			
			4.	Complete groundwater modelling to manage potential mounding of groundwater caused by basins.			
			5.	Obtain relevant <i>Water Management Act</i> approvals for any aquifer interference activity.			

Item	Hazard	Hazard Pathway	Impact Mitigation Measures			
		Stormwater system drains groundwater	 Design gravity drainage systems to avoid, as far as possible, elements that would intersect the groundwater table. 			
			Encourage stormwater recharge to offset any losses.			
			3. Obtain relevant <i>Water Management Act</i> approvals for any aquifer interference activity.			
		Services (water, sewer, power) intersect and drain groundwater.	Design the services system to avoid as far as possible, elements that would intersect the groundwater table.			
			 Sewer system to be pressure sewer to minimise the need for deep excavation and avoid intercepting groundwater. 			
			 Where services pipelines are located below the water table, these should be contained within sealed systems. 			
			4. Obtain relevant <i>Water Management Act</i> approvals for any aquifer interference activity.			
		Groundwater impacted	1. Minimise footprint of residential development.			
		by placement of residential fill pads / footings.	 Encourage stormwater recharge and design appropriate water sensitive urban design elements into the development to offset any losses. 			
4	Degradation of GDEs	Development causes groundwater quality at	Minimise footprint of residential development to avoid mapped GDEs.			
		GDEs to be degraded	2. Obtain relevant <i>Water Management Act</i> approvals for any aquifer interference activity.			
			 All sewer systems to be designed in accordance with relevant state and national standards. 			
			 All sewer systems to be certified by installer and engineer to be compliant with relevant standards following construction. 			
		Development causes groundwater flows to	Minimise footprint of residential development to avoid mapped GDEs.			
		GDEs to be modified	 Integrate water sensitive urban design principals into development to ensure groundwater recharge occurs in development footprint areas. 			
			3. Undertake detailed 3D groundwater modelling at DA stage to guide development design.			
			 Obtain relevant Water Management Act approvals for any aquifer interference or proposed extraction activity. 			

Item	Hazard	Hazard Pathway	Impact Mitigation Measures			
5	Loss of yield to other GW users	Development causes lowering of groundwater levels at nearby groundwater extraction bores.	 Minimise temporary dewatering for construction of basins and channel widening (restrict mechanised pumping where possible). Obtain relevant <i>Water Management Act</i> approvals for any aquifer interference activity. 			

4.2 Risk Assessment Methodology

Risks of the proposed development to groundwater resources, the environment and groundwater users, were assessed in accordance with the following general methodology:

- 1. Identify hazards through each receptor and hazard pathway (refer to Table 8).
- 2. Assess consequence of each hazard (refer to Table 9).
- 3. Determine likelihood of each hazard occurring (Table 10) with risk mitigation measures in place.
- 4. Classify risk as a combination of consequence and likelihood (Table 11).

Table 9: Adopted hazard consequence definitions.

Descriptor	Definition
Insignificant (A)	No detectable impact on groundwater resources or users
Minor (B)	Minor changes to groundwater conditions but no material harm.
Moderate (C)	Medium term environmental harm or moderate impacts on users
Major (D)	Long term environmental harm or major impacts on users
Severe (E)	Severe, permanent impact on groundwater resources or users.

Table 10: Adopted hazard likelihood definitions.

Descriptor	Definition
Almost certain (1)	Event is expected to occur often (several times per year).
Likely (2)	Event is likely to occur often (once every 1 to 3 years).
Possible (3)	Event might occur (once every 3-10 years).
Unlikely (4)	Event could occur (once every 20 years).
Rare (5)	Event will occur only in rare circumstances (once every 100 years).

Table 11: Adopted risk definitions.

		Consequence					
		Insignificant (A)	Minor (B)	Moderate (C)	Major (D)	Severe (E)	
	Almost certain (1)	Low	Medium	High	Very High	Very High	
poo	Likely (2)	Low	Medium	High	Very High	Very High	
Likelihood	Possible (3)	Low	Low	Medium	High	Very High	
Ë	Unlikely (4)	Very Low	Low	Low	Medium	High	
	Rare (5)	Very Low	Very Low	Low	Medium	High	

4.3 Risk Evaluation

A risk assessment for identified hazards is presented in Table 12. This provides an assessment of the hazard consequence [**Cons**] and likelihood [**Prob**] and resultant risks in accordance with the criteria in Table 9, Table 10 and Table 11.

Based on the adopted risk mitigation measures, risks to groundwater arising from the PP are assessed as acceptable, ranging from Very Low to Low. On this basis, hazards to groundwater can be appropriately managed with conventional techniques and significant impacts are not expected to arise from the future development.

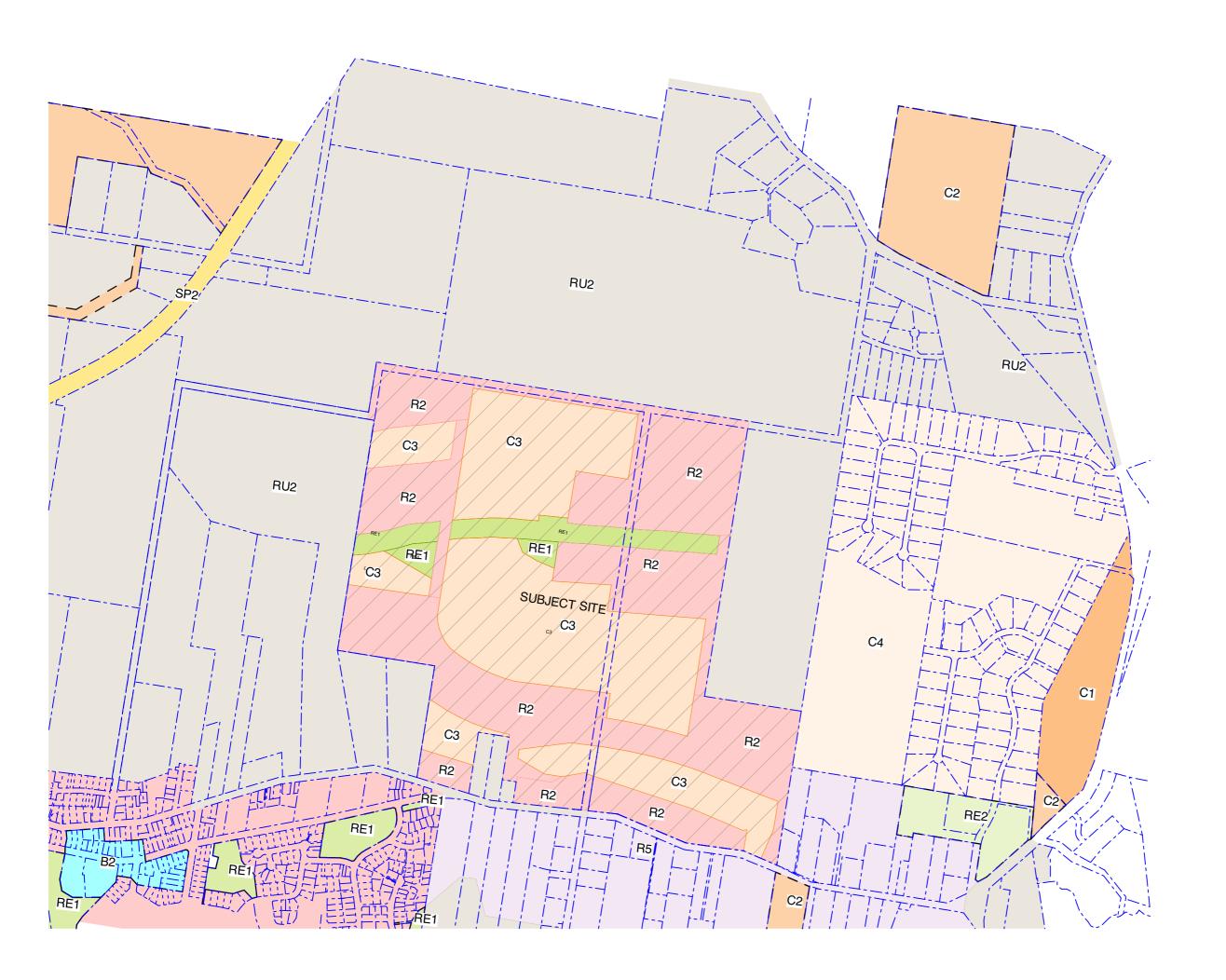
Table 12: Risk assessment outcomes.

Receptor	Hazard Pathway	Cons	Prob	Risk
GW contamination	Contaminated stormwater released to groundwater	Α	4	VL
	Untreated wastewater discharged to groundwater	С	4	L
	Sediment contamination caused by proposed channel widening excavations	А	4	VL
GW quality degradation from	Temporary lowering of groundwater table from excavation.	В	5	VL
ASS	Lowering of groundwater table from development	В	4	L
	Leaching from excavated ASS material	В	5	VL
Loss of GW resource	Excavations intersect and drain groundwater		3	L
	Stormwater system drains groundwater	С	4	L
	Services (water, sewer, power) intersect and drain groundwater.	В	5	L
	Groundwater impacted by placement of residential fill pads / footings.	В	4	L
Degradation of GDEs	Development causes groundwater quality at GDEs to be degraded		5	VL
	Development causes groundwater flows to GDEs to be modified	В	5	VL
Loss of yield to other GW users	Development causes lowering of groundwater levels at nearby groundwater extraction bores	В	5	VL

5 Conclusions and Recommendations

The following summary remarks and conclusions are made:

- Based on groundwater monitoring data collected to date, Site groundwater is generally shallow, unconfined and responsive to rainfall, particularly to the north of the sand dune.
- Groundwater to the south of the sand dune is typically deeper and less responsive to minor rainfall events.
- Laboratory testing identified minor exceedances of the ANZG (2018) guideline values for dissolved aluminium, copper and zinc. Given that no beneficial groundwater use is proposed at this stage, and that these levels are likely to be naturally occurring, contamination risk to sensitive receptors or the development is expected to be low.
- NSW Government HEVAE mapping identifies several medium to high value GDEs across the Site.
- Groundwater dewatering is expected to be limited to removal of groundwater in soil pore space from the excavation of soils below the water table in limited areas of the Site (basins and drainage channel).
- A comprehensive risk assessment of groundwater hazards has been completed, including documentation of a range of potential impact mitigation measures. The risk assessment found that based on the adopted risk mitigation measures, risks to groundwater arising from the proposed development are assessed as acceptable, ranging from Very Low to Low. On this basis, hazards to groundwater can be appropriately managed through conventional methods, and significant impacts to the groundwater environment are not expected to arise from the development proposal.
- Groundwater modelling should be completed at DA stage to guide implementation of mitigation measures (such as appropriate water sensitive urban design measures and recharge areas) to confirm the findings of the risk assessment.
- A groundwater and surface water monitoring plan should be prepared at the DA stage.



6 References

- Australian and New Zealand Governments and Australian State and Territory Governments (2018) *Australian and New Zealand Guidelines for Fresh and Marine Water Quality.* (ANZG, 2018).
- BKA Architecture (2024) *Proposed Masterplan and Yield & Proposed Land Zoning Map: Gan Gan Road, Anna Bay.* Ref 22011.
- Bureau of Meteorology Groundwater Dependent Ecosystems Atlas. http://www.bom.gov.au/water/groundwater/gde/map.shtml
- Martens and Associates (2024) *Geotechnical and Acid Sulfate Soil Assessment: Proposed Rezoning at 196 Old Main Road, 263, 271, 293 and 321 Gan Gan Road, Anna Bay, NSW.*
- NSW Department of Planning, Industry & Environment (2022) *Minimum requirements for building site groundwater investigations and reporting.* Referred to as NSW DPIE (2022)
- Total Surveying Solutions (2023) *Plan showing Location and Elevation of Monitoring Wells.* (TSS, 2023).

Appendix A - Proposed Masterplan

LEGEND:

- LEGEND:
 ZONE

 SP2 INFRASTRUCTURE

 RUZ RURAL LANDSCAPE

 PL LOW DENSITY RESIDENTIAL

 PS LARGE LOT RESIDENTIAL

 RE I PUBLIC RECREATION

 RE2 PRIVATE RECREATION

 BL LOCAL CENTRE

 C1 NATONAL PARKS à NATURE RESERVES

 C2 ENVIRONMENTAL CONSERVATION

 C3 ENVIRONMENTAL MANAGEMENT

 C4 ENVIRONMENTAL LIVING

 Z5 SUBJECT SITE

Client

AB Rise Pty Ltd

Architect

BKA Architecture

T: +61 2 9318 9200 T: +61 2 4926 5563 T: +61 2 6687 2712 E: bka@bka.com.au W: www.bka.com.au

North

Scale at A3 1:10000

Status Not for Drawn VK, JG

Construction

Checked JG 3/12/2024

Project Address

Gan Gan Road, Anna Bay

Drawing

Proposed Land Zoning Map

22011 С A013

BKA Architecture

22011 Gan Gan Rd, Anna Bay

Calculations

Stage	Section	Residential Area	Standard Blocks #		Dwellings #	Public Park	Evironmental
		m2		Occupation #		m2	Reserve m2
			500m2	600m2			
			16.7m x 30m	20m x 30m			
			R2	R2	R2	RE1	E3
Stage 1	A	8,138	16		16		
	В	8,153	16		16		
	С	2,854	2	0	2		
Stage 2	EA	6,337			25		
	EB	4,328			25		
	FA	6,838	8	3	14		
Stage 3	GA	6,939	11	2	15		
	GB	5,697	10	1	12		
	GC	12,844		1	26		
	GD	9,287	10	2	14		
Stage 4	НА	8,083			16		
	НВ	5,724		1	12		
	НС	8,097	8	2	12		
	HD	5,743		1	12		
	HE	9,766			20		
Stage 5	IA	12,127		3	24		
	IB	7,957		1	16		
	IC	9,783		4	16		
	ID	5,728		1	12		
	IE	5,728		1	12		
	IF	7,728		2	12		
	IG	6,068			12		
	IH	8,073			16		
	IJ	8,071	16		16		
Stage 6	NA	7,212		1	15		
Stage 7	MA	11,622		7	26		
	MB	15,050		3	30		
-	MC	15,858		11	38		
Stage 8	LA	8,071	16		16		
	LB	7,644		1	16		
	LC	7,712		1	16		
Stage 9	KA	7,838		1	13		
	KB	7,697		4	15		
0. 15	KC	8,379		1	17		
Stage 10	JA	7,961		2	17		
	JB	5,701	8	2	12		
	JC	9,279	10	2	14		

TOTAL Dwellings 584 **TOTAL Lots** 476 plus 2 Multi Dwelling Housing Lots

418

280,970.24

Proposed Masterplan

General Notes DO NOT SCALE FROM DRAWING. USE FIGURED DIMENSIONS ONLY. CHECK ALL DIMENSIONS ON SITE BEFORE ANY MANUFACTURE OR CONSTRUCTION All dimensions are in millimetres unless stated otherwise.
All architectural, drawings are to be read in conjunction with the relevant consultant documents. All dimensions and levels are to be checked and verified on site prior to the commencement of work, shop drawings or fabrication of any components. Refer all discrepancies to the Architect for determination. Drawings are not to be scaled, use only figured dimensions. This drawing is copyright and must not be retained, copied or used without the permission of BKA Architecture. This document has been prepared for and on behalf of the clients noted on the drawing, BKA Architecture's responsibility is to these clients only and not to any third party who may rely on these documents. Nominated Architects (NSW) - John Baker 3552, John Kavanagh 5999

4/3/2024 22/3/2024 3/12/2024

Preliminary Issue to Council Issue for Scoping Report Issue for Planning Proposal

Client AB Rise Pty Ltd

SYDNEY Suite 1.04, 77 Dunning Ave, Rosebery, NSW 2018 NORTH COAST Suite 4 39-41 Main St, Clunes, NSW 2480 19 Bolton St, Newcastle NSW 2300

Scale at A1 1:5000

TOTAL

NOTE: Excludes current R2 zoning (DA)

North Drawn

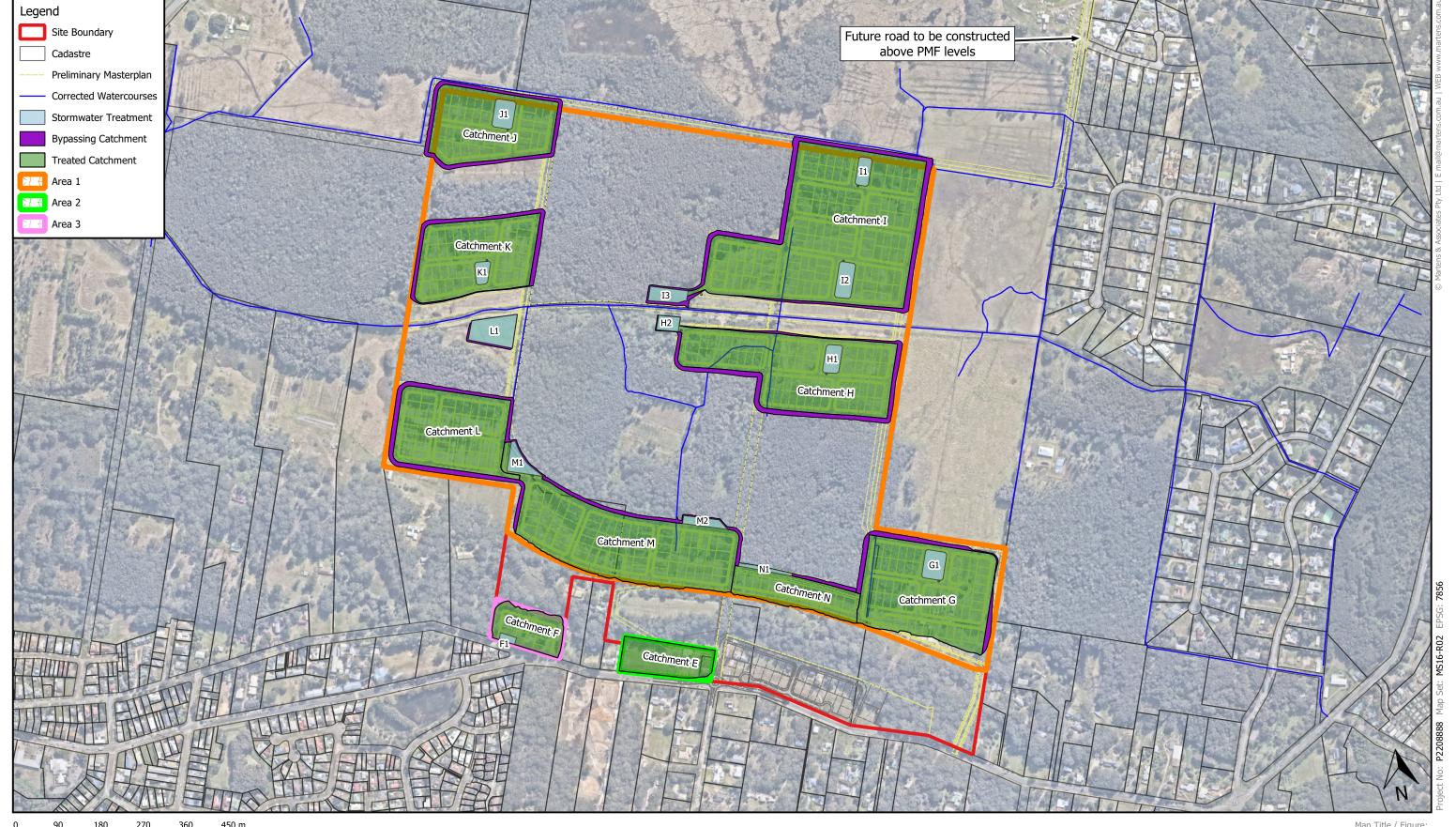
Project Address Gan Gan Road, Anna Bay Proposed Masterplan and Yield

Drawing No.

T: +61 2 9318 9200 T: +61 2 4926 5563 E: bka@bka.com.au W: www.bka.com.au

T: +61 2 6687 2712

3/12/2024


VK, JG Not for Construction

22011

A100

Appendix B - Stormwater Management Strategy

1:7500 @ A3

Viewport

- Note:
 Aerial from Nearmap (2024).
 Cadastre from NSW Spatial Services Clip and Ship (2023).
 Preliminary masterplan from BKA Architecture (2024).
 Corrected watercourses are based on MA Riparian Management Study (2024).
 Catchment areas and basin locations are indicative only.

martens Environment | Water | Geotechnics | Civil | Projects

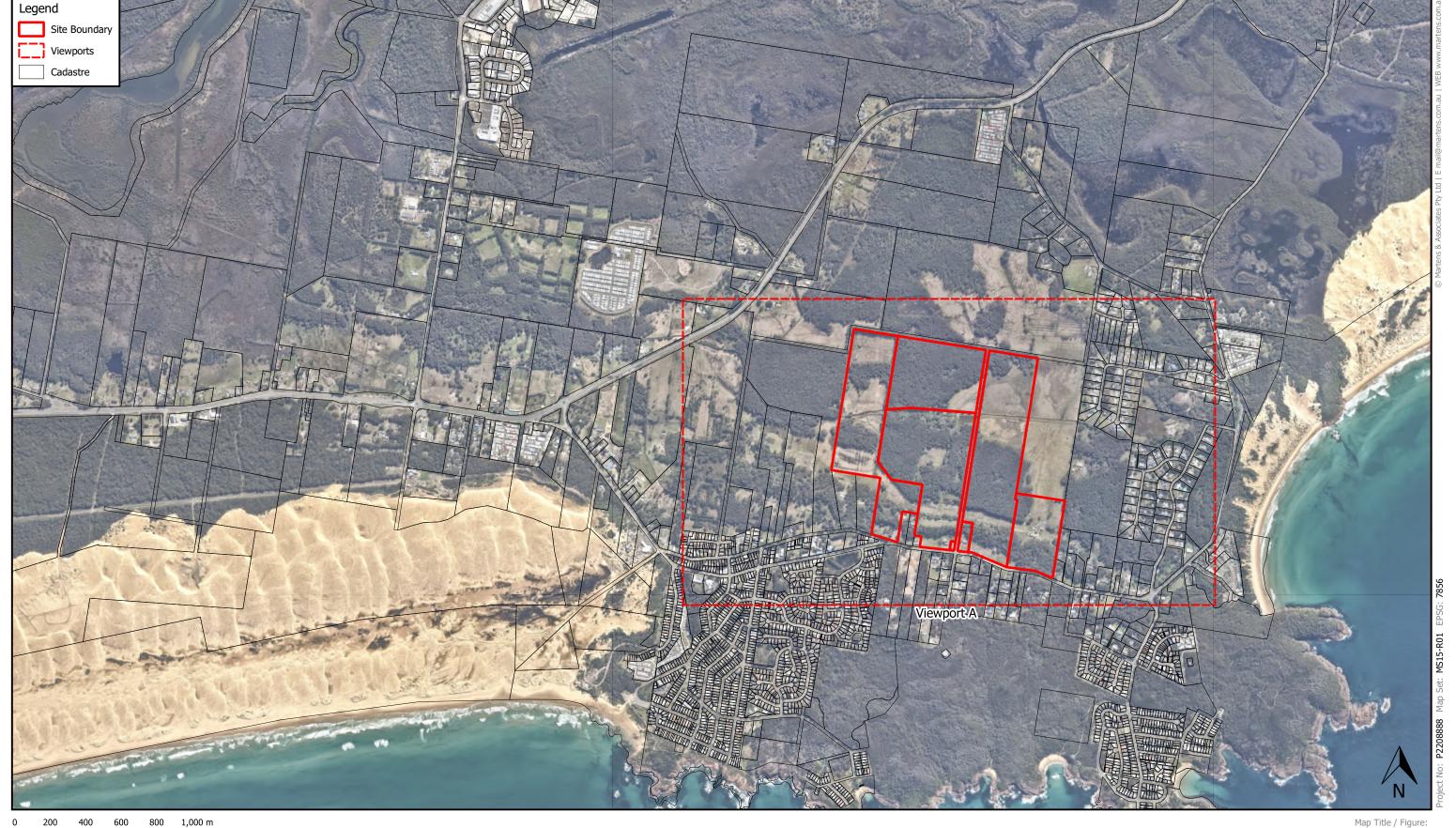
Stormwater Management Strategy

13/12/2024

Site

Project

Client


Date

Sub-Project

Map 02 Gan Gan Rd & Old Main Rd, Anna Bay, NSW Proposed Land Rezoning Conceptual Stormwater Management Strategy AB Rise Pty Ltd

Appendix C - Site Maps

Project

Client

Date

Sub-Project

13/12/2024

Map Title / Figure: Site Setting


Viewport

1:20000 @ A3

Notes: - Aerial from Nearmap (2024). - Cadastre from NSW Clip and Ship.

Map 01 Lots on Old Main Road and Gan Gan Road, Anna Bay NSW Proposed Rezoning Hydrogeological Assessment AB Rise Pty Ltd

martens
Environment | Water | Geotechnics | Civil | Projects

1:7500 @ A3

Viewport A

Notes:
- Aerial from Nearmap (2024).
- NGIS Bore locations from BoM (2023).

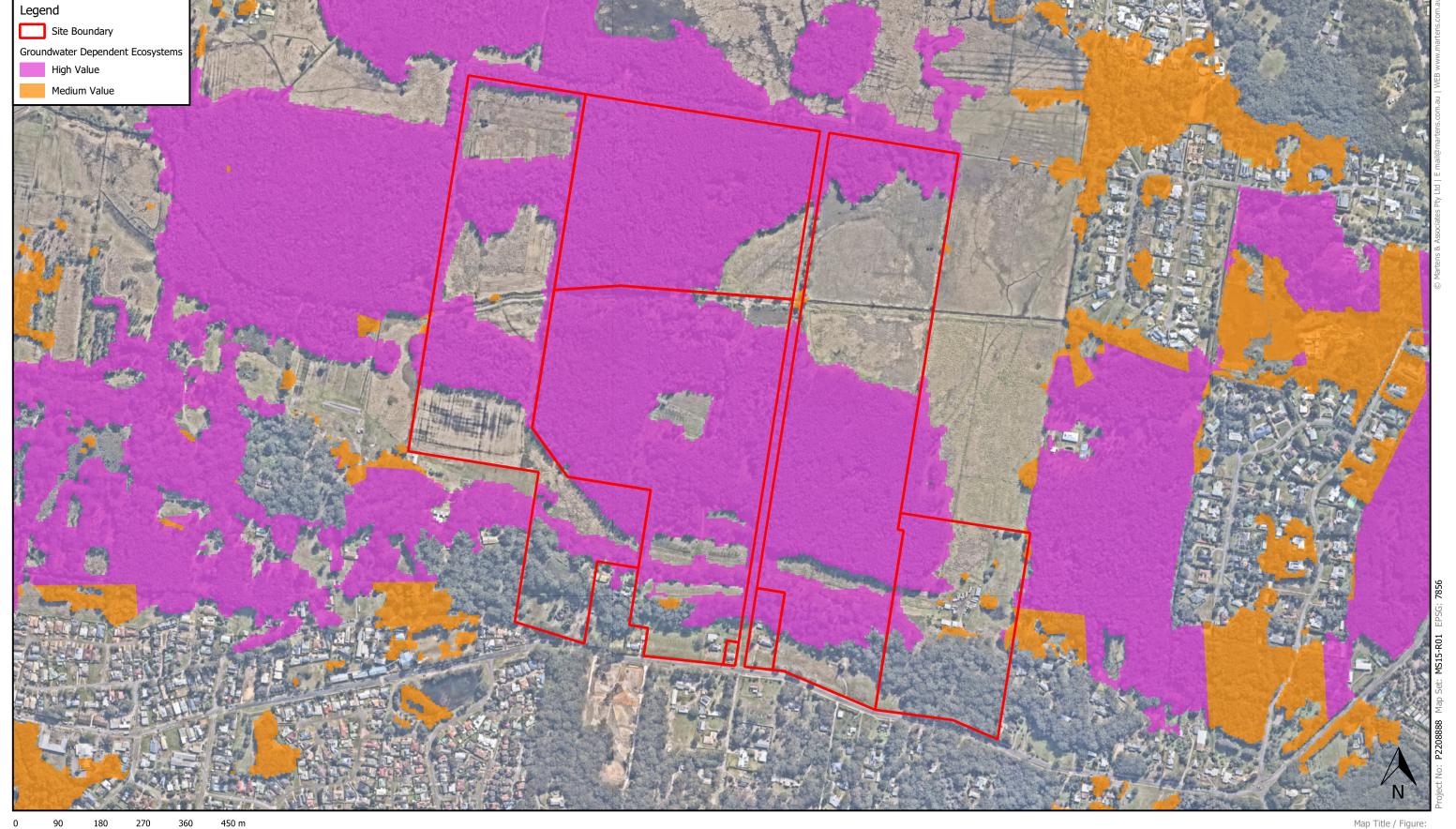
Map 02

Lots on Old Main Road and Gan Gan Road, Anna Bay NSW

Proposed Rezoning Hydrogeological Assessment

AB Rise Pty Ltd

13/12/2024


Project

Client

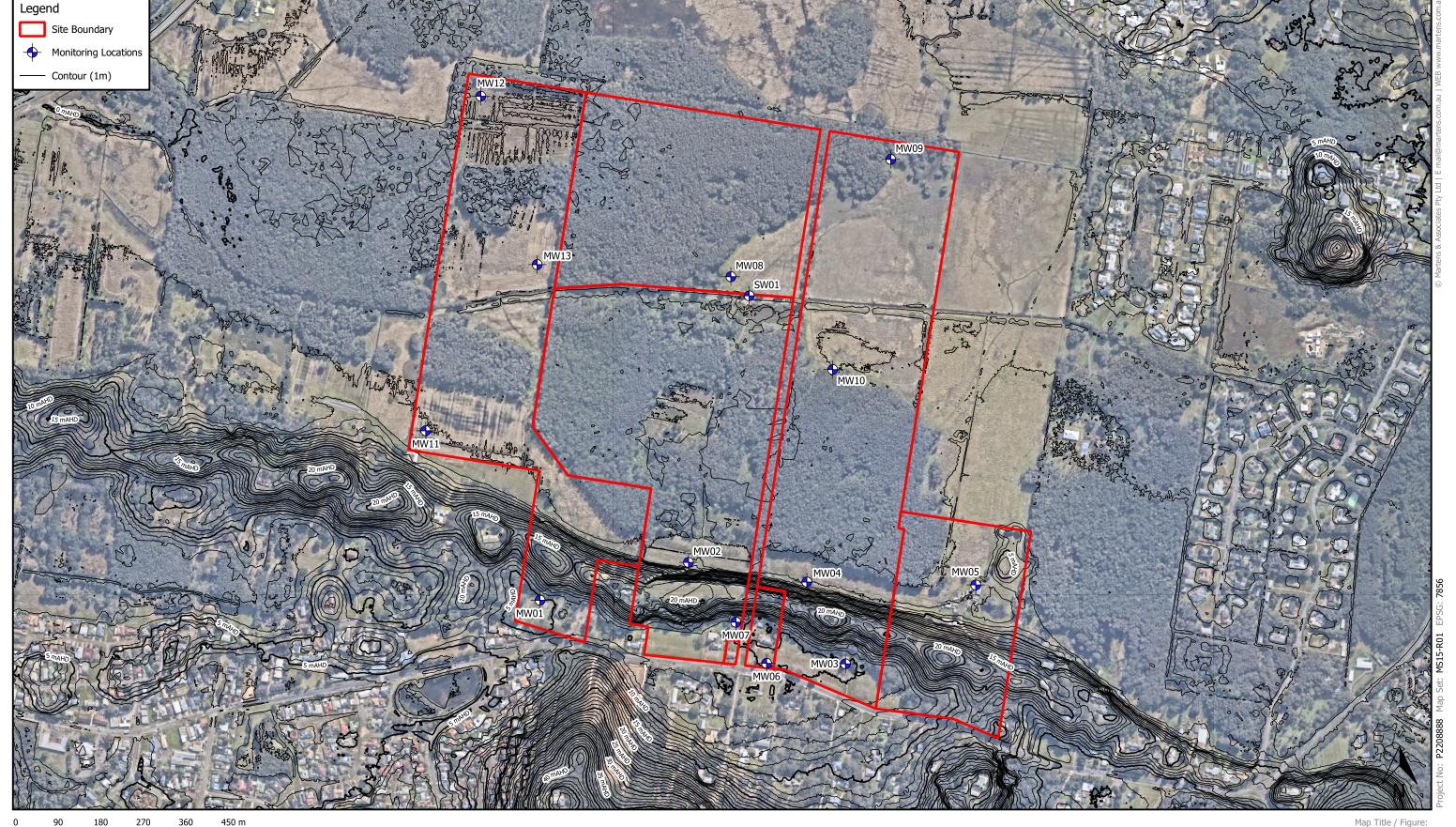
Date

Sub-Project

1:7500 @ A3

Viewport A

Notes: - Aerial from Nearmap (2024). - GDE coverage from NSW Government HEVAE mapping.


Groundwater Dependent Ecosystems

Map 03 Lots on Old Main Road and Gan Gan Road, Anna Bay NSW

Proposed Rezoning Hydrogeological Assessment

AB Rise Pty Ltd 13/12/2024 Project

Map Title / Figure: Monitoring Locations

Project

Client

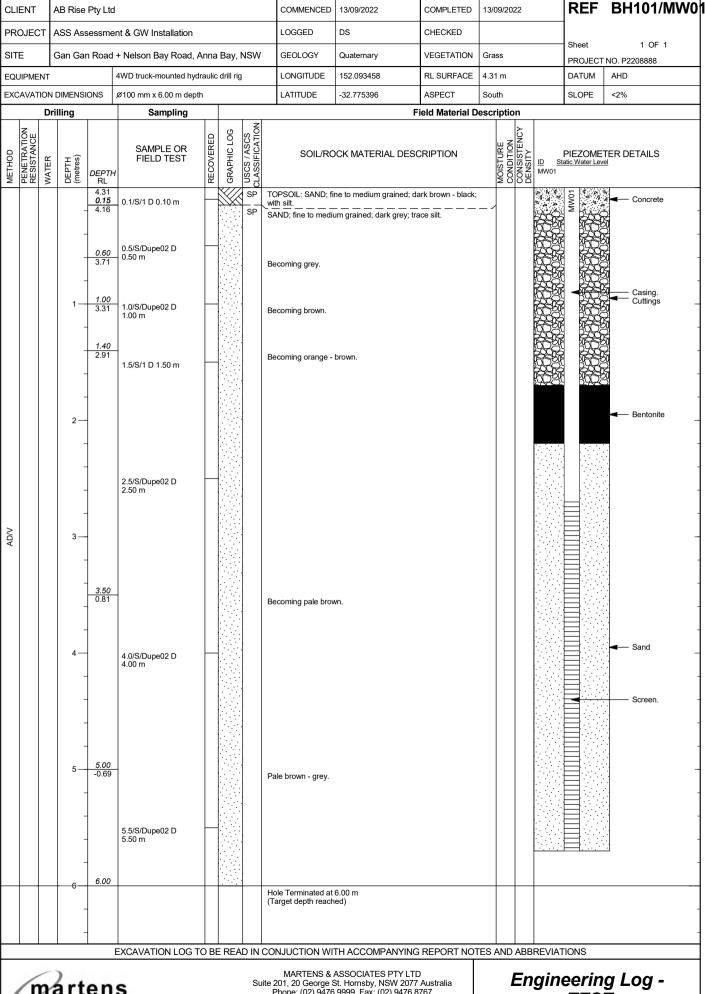
Date

Sub-Project

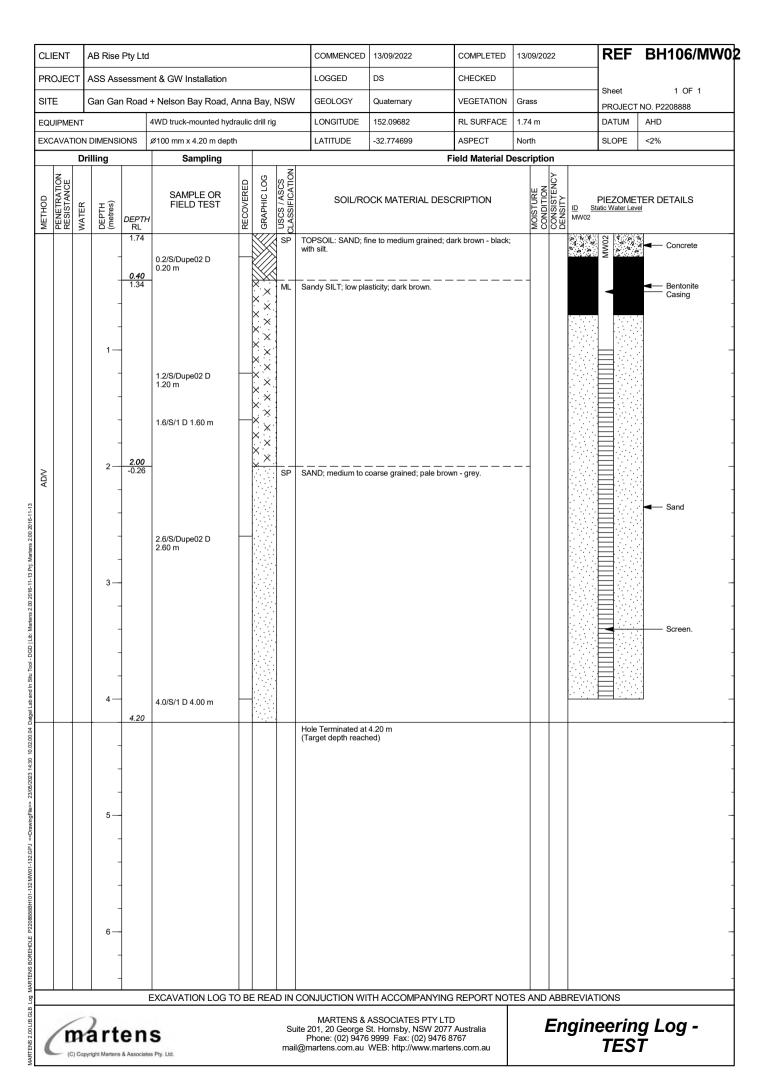
1:7500 @ A3 Viewport A

Notes: - Aerial from Nearmap (2024). - Topography from NSW DFSI (2012).

Map 04 Lots on Old Main Road and Gan Gan Road, Anna Bay NSW


Proposed Rezoning Hydrogeological Assessment

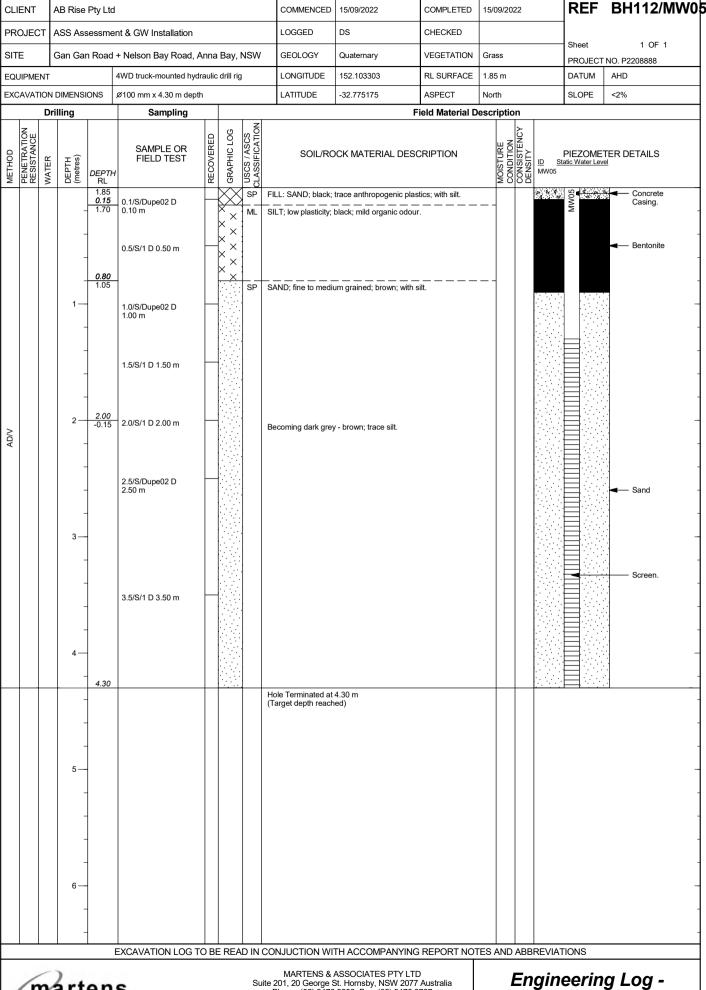
AB Rise Pty Ltd 13/12/2024



Appendix D - Well Construction Logs

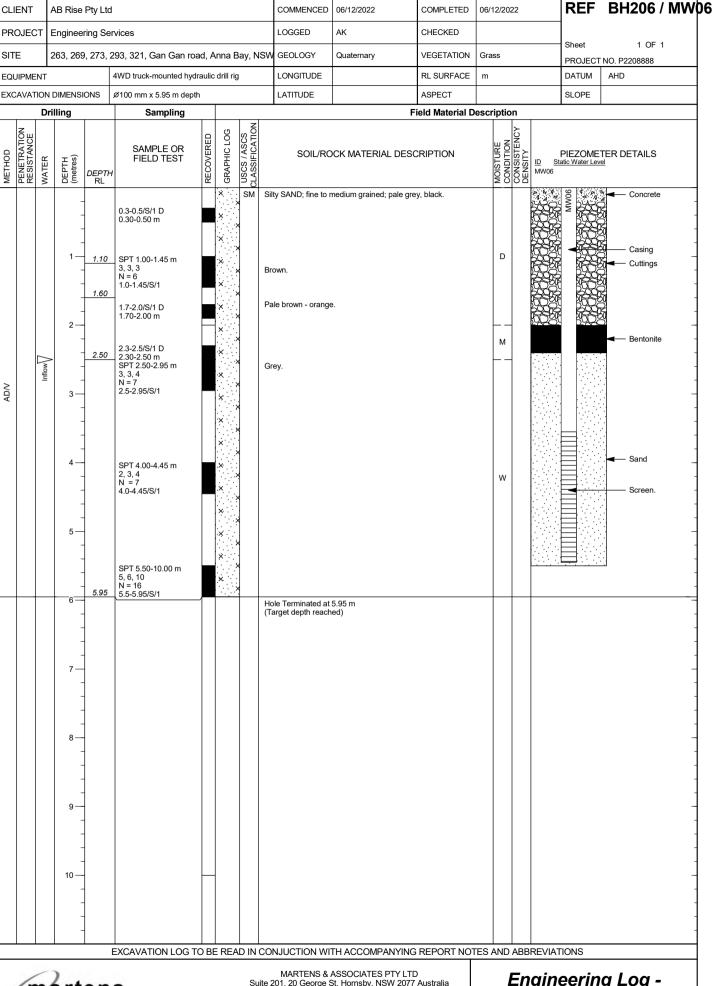
martens (C) Copyright Martens & Associates Pty. Ltd. MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

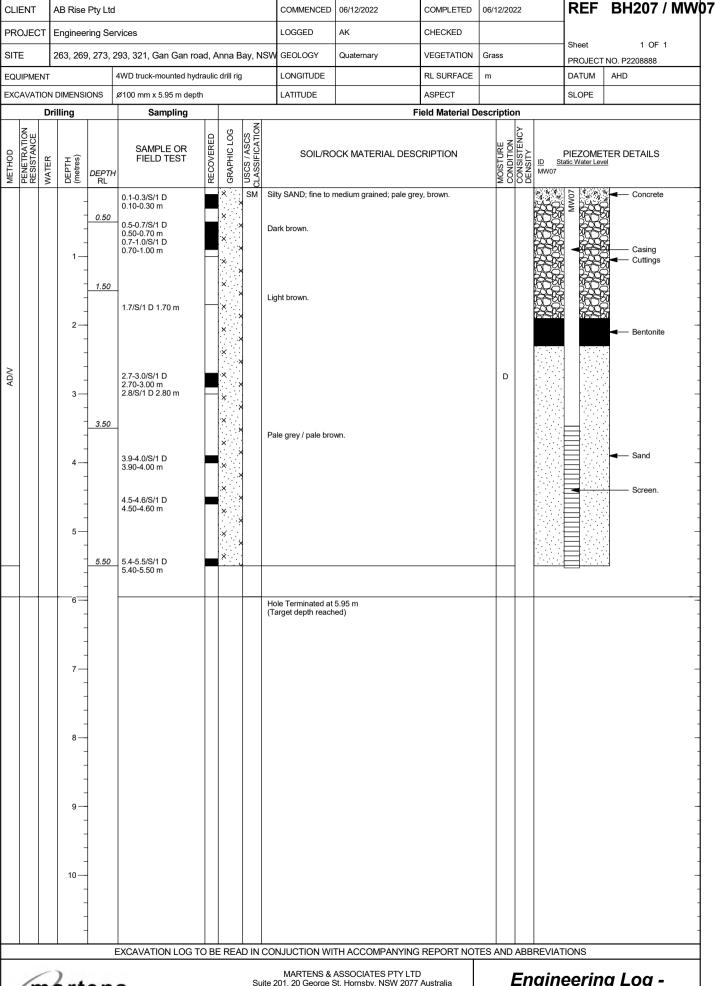
Engineering Log - TEST

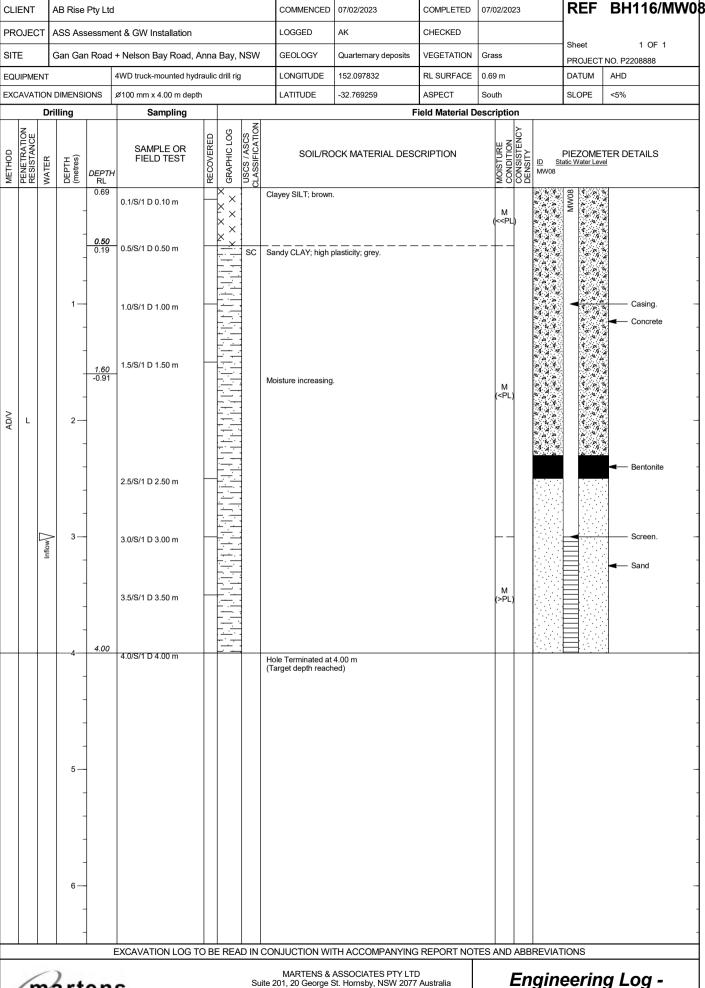

CLI	ENT	,	AB Rise	Pty Ltd					COMMENCED	14/09/2022	COMPLETED	14/09/2	022		REF	BH109/MW0
PR	OJEC	т	ASS Ass	essmei	nt & GW Installation				LOGGED	DS	CHECKED					
SIT	E	-	Gan Gar	Road	+ Nelson Bay Road, A	nna	Bay, I	NSW	GEOLOGY	Quaternary	VEGETATION	Grass			Sheet PROJECT	1 OF 1 NO. P2208888
EQL	JIPME	NT			4WD truck-mounted hydr	aulio	drill rig		LONGITUDE		RL SURFACE	m			DATUM	AHD
EXC	AVAT	ION	DIMENSI	ONS .	Ø100 mm x 5.50 m depth	1			LATITUDE		ASPECT				SLOPE	
		Dri	illing		Sampling				•	F	ield Material D	escripti	on		•	
МЕТНОБ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY DENSITY	ID St MW03	PIEZOME atic Water Lev	TER DETAILS 현
				0.20	01/S/Dupe02 D 0.10 m				OPSOIL: SAND; n	nedium to fine grained; da	ark grey; trace silt				© \$4 \$200	Concrete
			-	1.00	0.5/S/1 D 0.50 m 1.0/S/Dupe02 D				AND; medium to fi	ne grained; grey; trace si	ilt.					- Cuttings
			-	1.40	1.5/S/1 D 1.50 m		× × × ×	SM S		nedium grained; dark bro	own; mild organic					Casing -
ADW			2 —	2.00	1.9/S/1 D 1.90 m 2.5/S/Dupe02 D 2.50 m 4.0/S/Dupe02 D 4.00 m		X > >		AND; fine to medicagments; mild orga	um grained; pale brown - anic odour.	grey; trace silt; sh	nell				Bentonite Sand Screen.
			6	5.50	5.2/S/Dupe02 D 5.20 m				lole Terminated at Target depth reach							-
	/r	p:	art		EXCAVATION LOG TO	ЭΒ	E REA		MARTENS &	TH ACCOMPANYING ASSOCIATES PTY LTE St. Hornsby, NSW 2077 19999 Fax: (02) 9476 8						g Log -

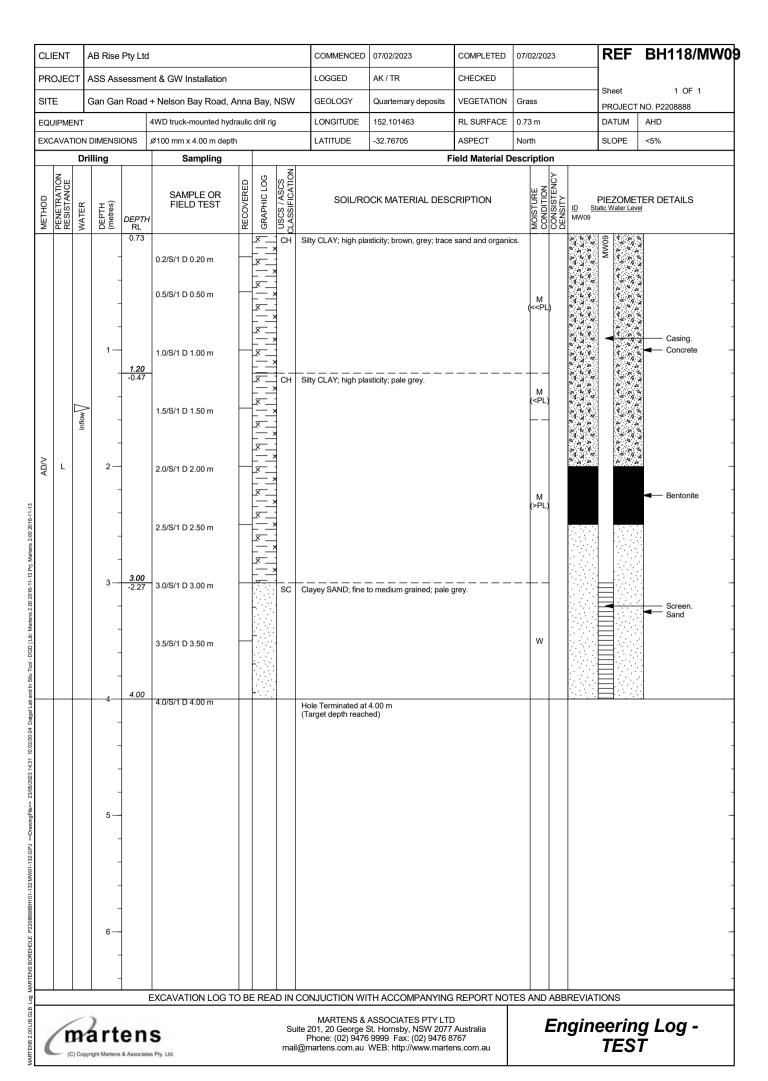
mail@martens.com.au WEB: http://www.martens.com.au

TEST

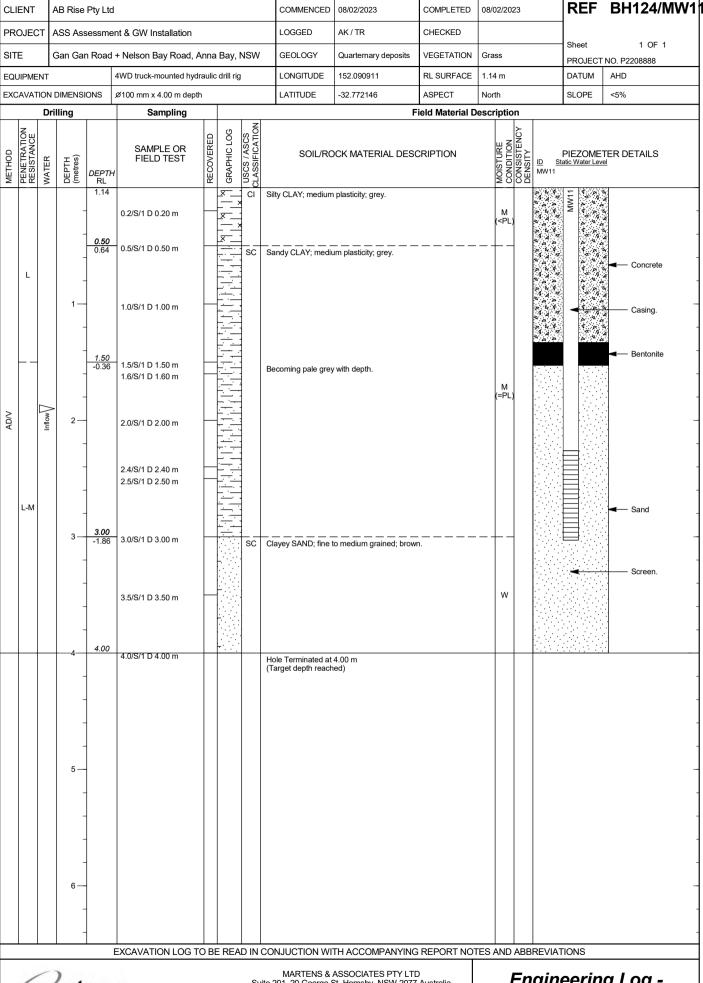

CLIENT	А	B Rise	Pty Ltc					COMMENCED	15/09/2022	COMPLETED	15/09/2022	REF BH110/MW
PROJECT ASS Assessment & GW Installation							LOGGED	DS	CHECKED			
SITE	G	an Gar	n Road	+ Nelson Bay Road,	Anna	Вау,	NSW	GEOLOGY	Quaternary	VEGETATION	Grass	Sheet 1 OF 1 PROJECT NO. P2208888
QUIPMENT	Г			4WD truck-mounted hyd	Iraulio	drill rig	9	LONGITUDE	152.099489	RL SURFACE	2.17 m	DATUM AHD
XCAVATIO	NΕ	IMENSI	ONS	Ø100 mm x 4.50 m dept	h			LATITUDE	-32.775092	ASPECT	North	SLOPE <2%
С	Dril	ling		Sampling				•		Field Material D	Description	
METHOD PENETRATION RESISTANCE	WAIER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL [DESCRIPTION	MOISTURE CONDITION CONSISTENCY DENSITY	PIEZOMETER DETAILS D Static Water Level MW04
		-	2.17	0.1/S/Dupe02 D 0.10 m 0.5/S/1 D 0.50 m			SP	SAND; fine to media	SAND; fine to medium grained; dark brown - black; with silt.			Concrete Casing. Bentonite
	1— 1.0/S/Dupe02 D X X X X X X X X X X X X X X X X X X			MH	SILT; medium plast sand.	icity; dark grey - bla	ck; trace fine grained					
	1.5/S/1 D 1.50 m											
ADIV		2	2.00 0.17	_		××	SP	SAND; fine to media	um grained; grey; tr	ace silt.		Sand
		3—		2.5/S/Dupe02 D 2.50 m								
		-	3.20 -1.03	3.5/S/Dupe02 D 3.50 m			SW	SAND; medium to o fragments.	 ∞arse grained; dark	grey; trace shell		Screen.
		4	4.00 -1.83 4.50	4.3/S/1 D 4.30 m				Pale brown - grey.				
		- - 5—	7.50					Hole Terminated at (Target depth reach				
		-										
		6										
				EXCAVATION LOG T	O PI	 FRE^	יואו טי	CONTLICATION WI		ANG BEDORT NO	TES AND APP	 BREVIATIONS
		art ght Martens	en	s	<u> </u>	_ 1_P	Su	MARTENS & te 201, 20 George \$	ASSOCIATES PT St. Hornsby, NSW 5 9999 Fax: (02) 9-	/ LTD 2077 Australia 176 8767		ngineering Log - TEST

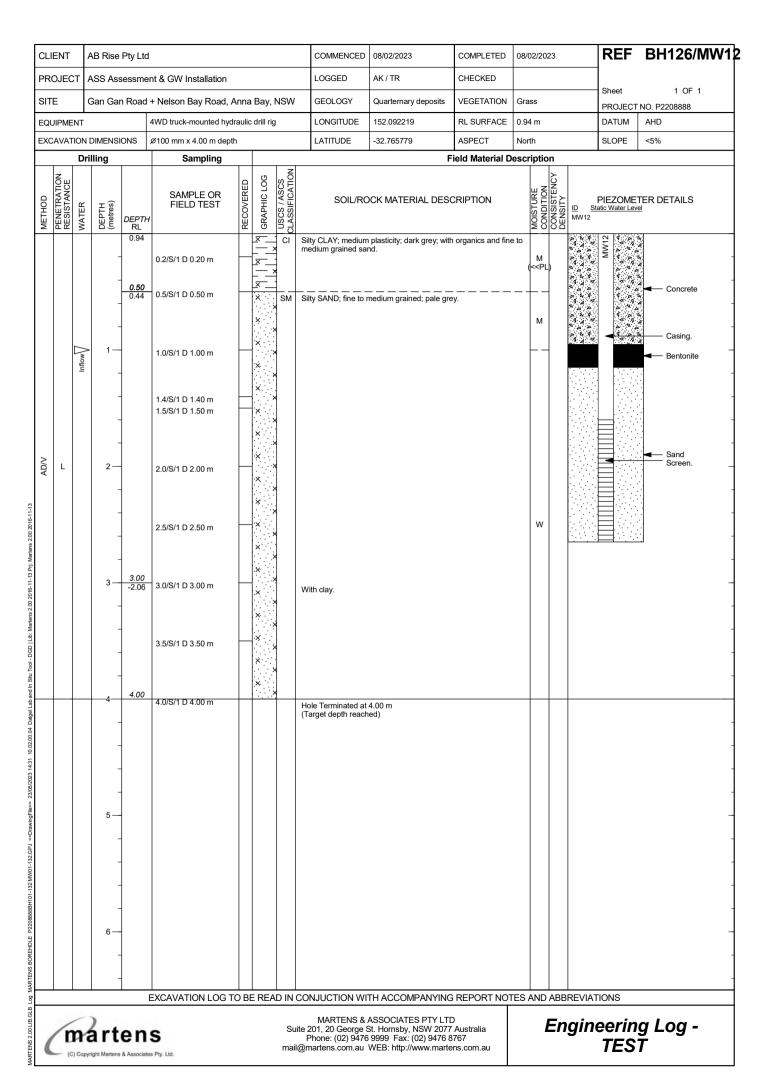



MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au


MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

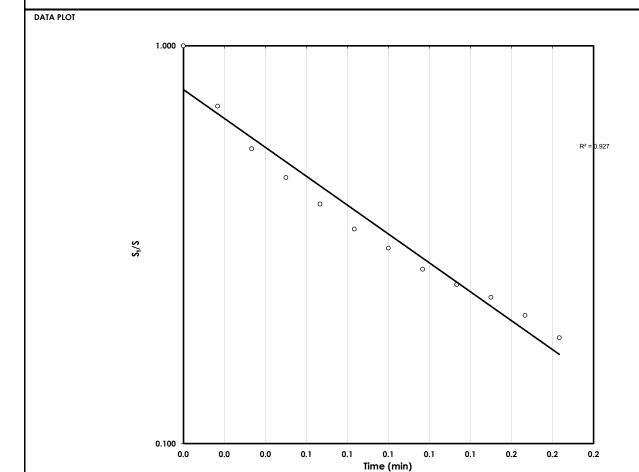




CLI	ENT	,	AB Rise	Pty Ltc	I				COMMENCED	08/02/2023	COMPLETED	08/	02/20	23		REF	BH121/MW1		
PR	OJEC	т	ASS As	sessme	ent & GW Installation				LOGGED	AK / TR	CHECKED]			
SIT	E	(Gan Ga	n Road	+ Nelson Bay Road, A	nna	Bay, I	NSW	GEOLOGY	Quarternary deposits	VEGETATION	Gra	ass			Sheet PROJECT	1 OF 1 NO. P2208888		
EQUIPMENT 4WD truck-mounted hydraulic drill rig L										152.100112	RL SURFACE	0.9	8 m			DATUM	AHD		
EXCAVATION DIMENSIONS Ø100 mm x 4.00 m depth										-32.771047	ASPECT	Sou	uth			SLOPE	<5%		
			illing		Sampling					F	ield Material D		Ė	T					
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED		USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION		MOISTURE	CONSISTENCY	ID St MW10	PIEZOMETER DETAILS Static Water Level 10			
				0.98	0.2/S/1 D 0.20 m		xx x x	СН	Silty CLAY; high pla	sticity; grey brown; with o	rganics; trace sar	nd.	M (< <pl< td=""><td>_)</td><td></td><td>MW10</td><td></td></pl<>	_)		MW10			
				0.50 0.48	0.5/S/1 D 0.50 m		x	sc	Sandy CLAY; high p	olasticity; grey.						A 9 A	- - -		
			1-	_	1.0/S/1 D 1.00 m								M (=PL)		4 5 4 5 4 5 4 5 5 4	Casing.		
		Inflow			1.50/S/1 D 1.50 m										4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ف. احدادا	-		
AD/V	L		2-	-	2.0/S/1 D 2.00 m										42442444	A 7 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	_		
					2.5/S/1 D 2.50 m								M (>PL		4 4	A 4 4			
			3-		3.0/S/1 D 3.00 m												Sand.		
					3.5/S/1 D 3.50 m														
			-4	4.00	4.0/S/1 D 4.00 m				Hole Terminated at (Target depth reach								-		
			5—	-													-		
			-	1															
			6-	_													-		
		<u> </u>	<u> </u>	1	LEXCAVATION LOG TO) BI	E REA	D IN (CONJUCTION WI	TH ACCOMPANYING	REPORT NO	ΓES	AND	ABB	I REVIAT	TIONS			
	/) .	3.40				٠ .	MARTENS &	ASSOCIATES PTY LTE) Austrolia			Fn	ain	perin	a I oa -		

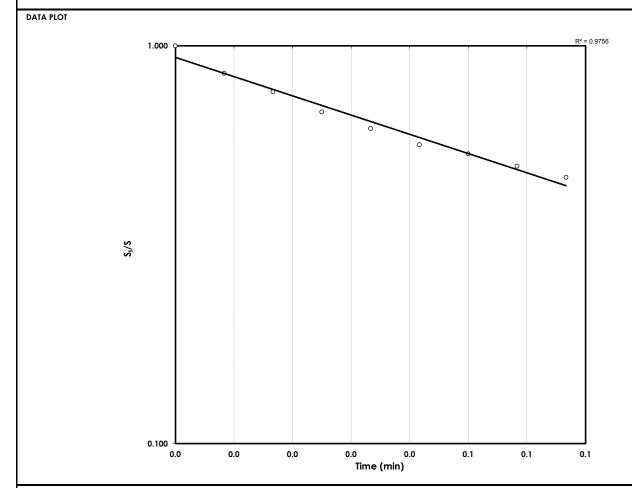
MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au


CL	CLIENT AB Rise Pty Ltd						COMMENCED 08/02/2023 COMPLETED				02/20	23		REF	BH129/MW		
PR	OJE	CT A	ASS Ass	essme	nt & GW Installation				LOGGED	AK / TR	CHECKED						
SITE Gan Gan Road + Nelson Bay Road, Anna Bay, NSW									GEOLOGY	Quarternary deposits	VEGETATION	Gra	Grass PROJECT NO. P22088			1 OF 1	
									LONGITUDE	152.09346	RL SURFACE	0.84	4 m			DATUM	AHD
EX	CAVA	TION [DIMENSI	ONS	Ø100 mm x 4.00 m dept	1			LATITUDE	-32.768997	ASPECT	Sou	ıth			SLOPE	<5%
		Dri	lling		Sampling					F	ield Material D)esci	iptic	n			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DESC	CRIPTION		MOISTURE	CONSISTENCY DENSITY	ID St MW13	PIEZOME atic Water Le	TER DETAILS
ADIV	L		1— 1— 2— 3—	1.00 -0.16 1.50 -0.66	0.2/S/1 D 0.20 m 0.5/S/1 D 0.50 m 1.0/S/1 D 1.00 m 1.5/S/1 D 1.50 m 2.0/S/1 D 2.00 m 3.0/S/1 D 2.50 m		\$	SC S	organics; trace sand	Im to high plasticity; pale	grey, brown.		M < <pl< th=""><th></th><th></th><th>4 0 0</th><th>Casing. Concrete Bentonite Screen.</th></pl<>			4 0 0	Casing. Concrete Bentonite Screen.
			5—	4.00	3.5/S/1 D 3.50 m		(A.		Hole Terminated at Target depth reach	ed)							
_					EXCAVATION LOG T	O BI	REA	DINC	ONJUCTION WI	TH ACCOMPANYING	REPORT NO	TES	AND	ABB	REVIAT	IONS	
	/r	n	art	en	s			Suite	201, 20 George S	ASSOCIATES PTY LTE St. Hornsby, NSW 2077	Australia			En	gin	eerin	g Log -

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

Appendix E - Slug Test Results


Single Bore Slug Test (Falling Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Gan Gan Road, Anna Bay, NSW Test Date **7/12/2022** Project P2208888 Field Testing **DS** Project Ref MW01 (1) Data Analysis **DS** Borehole Ref Hvorslev (1981) Reviewed JF Method FIELD TEST DATA **FACTOR Enter Data** Unit Ground surface 2.780 H - Initial water level reading (depth) m Casing h_o - Water level reading at time = 0 (depth) 3.007 m Capping 0.025 r - Casing radius m Borehole R - Bore radius 0.050 m Screen L - Length of open screen 3.50 Filter Pack ${\rm T_o}$ - Length of characteristic time 0.09 minutes K_{sat} - Saturated hydraulic conductivity 6.1678 m/d Saturated zone

Head Office

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Single Bore Slug Test (Falling Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Gan Gan Road, Anna Bay, NSW Test Date 26/11/2024 Project P2208888 Field Testing **BTM** Project Ref MW01 (2) Data Analysis **BTM** Borehole Ref Hvorslev (1981) Reviewed **DS** Method FIELD TEST DATA **FACTOR Enter Data** Unit Ground surface 2.500 H - Initial water level reading (depth) m Casing h_o - Water level reading at time = 0 (depth) 2.722 m Capping 0.025 r - Casing radius m Borehole R - Bore radius 0.050 m Screen L - Length of open screen 3.50 Filter Pack ${\rm T_o}$ - Length of characteristic time 0.08 minutes

6.5640

m/d

K_{sat} - Saturated hydraulic conductivity

Head Office

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Saturated zone

Single Bore Slug Test (Falling Head) Method ST-13 Revised 7.3.2007

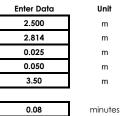
PROJECT DETAILS

Project
Project Ref
Borehole Ref
Method

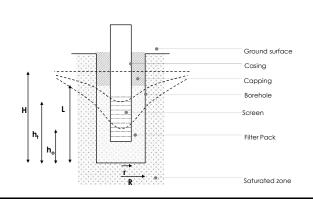
Gan Gan Road, Anna Bay, NSW	
P2208888	
MW01 (3)	
Hvorslev (1981)	1

Test Date 26/11/2024
Field Testing BTM
Data Analysis BTM
Reviewed DS

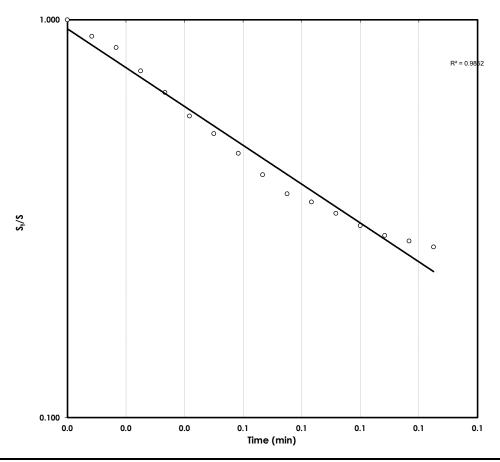
FIELD TEST DATA


FACTOR H - Initial water level reading (depth) h_o - Water level reading at time = 0 (depth) r - Casing radius

r - Casing radius R - Bore radius


L - Length of open screen

T_o - Length of characteristic time


 K_{sat} - Saturated hydraulic conductivity

6.5200 m/d

DATA PLOT

Head Office

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Single Bore Slug Test (Falling Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Gan Gan Road, Anna Bay, NSW Test Date **7/12/2022** Project P2208888 Field Testing **DS** Project Ref MW02 (1) Data Analysis **DS** Borehole Ref Hvorslev (1981) Reviewed JF Method FIELD TEST DATA **FACTOR Enter Data** Unit Ground surface 3.480 H - Initial water level reading (depth) m Casing h_o - Water level reading at time = 0 (depth) 3.866 m Capping 0.025 r - Casing radius m Borehole R - Bore radius 0.050 m Screen L - Length of open screen 3.30 Filter Pack ${\rm T_o}$ - Length of characteristic time 0.03 minutes K_{sat} - Saturated hydraulic conductivity 22.3636 m/d Saturated zone DATA PLOT 1.000 R2 = 0.9604 0 0.100 0

0.1

0.1

0.1

0.1

0.010

0.0

0.0

0.0

0.0

0.0

Time (min)

Head Office

0.1

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Single Bore Slug Test (Falling Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Gan Gan Road, Anna Bay, NSW Test Date **7/12/2022** Project P2208888 Field Testing **DS** Project Ref MW03 (1) Data Analysis **DS** Borehole Ref Hvorslev (1981) Reviewed JF Method FIELD TEST DATA **FACTOR Enter Data** Unit Ground surface 4.160 H - Initial water level reading (depth) m Casing h_o - Water level reading at time = 0 (depth) 4.846 m Capping 0.025 r - Casing radius m Borehole R - Bore radius 0.050 m Screen L - Length of open screen 3.30 Filter Pack ${\rm T_o}$ - Length of characteristic time 0.11 minutes K_{sat} - Saturated hydraulic conductivity 5.1353 m/d Saturated zone DATA PLOT 1.000 0.9774 0 0.100

0.010

0.0

0.1

0.1

0.2

Time (min)

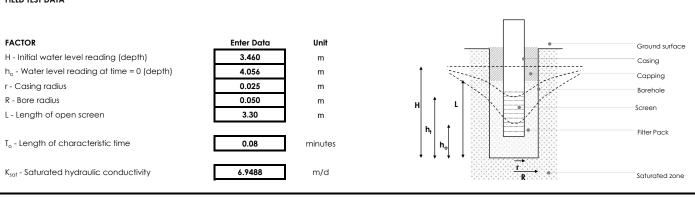
0.2

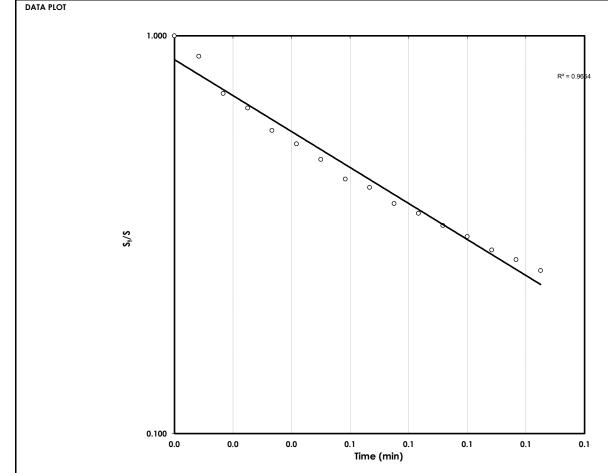
0.3

Head Office

0.3

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

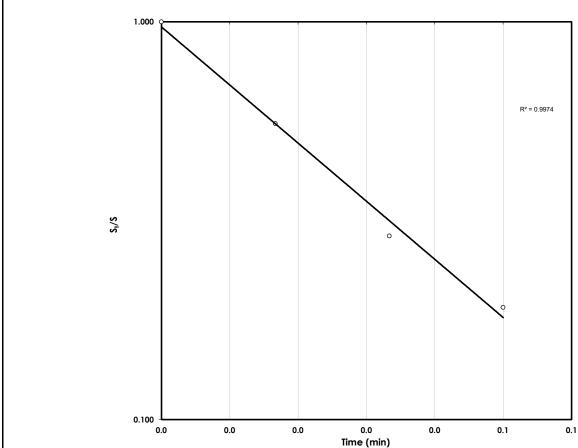

Single Bore Slug Test (Rising Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Test Date **25/05/2023** Gan Gan Road, Anna Bay, NSW Project P2208888 Field Testing **BTM** Project Ref MW03 (2) Data Analysis **DS** Borehole Ref Hvorslev (1981) Reviewed JF Method FIELD TEST DATA **FACTOR Enter Data** Unit Ground surface 2.700 H - Initial water level reading (depth) m Casing h_o - Water level reading at time = 0 (depth) 2.043 m Capping 0.025 r - Casing radius m Borehole R - Bore radius 0.050 m Screen L - Length of open screen 3.30 Filter Pack ${\rm T_o}$ - Length of characteristic time 0.09 minutes K_{sat} - Saturated hydraulic conductivity 6.0906 m/d Saturated zone DATA PLOT 1.000



Head Office

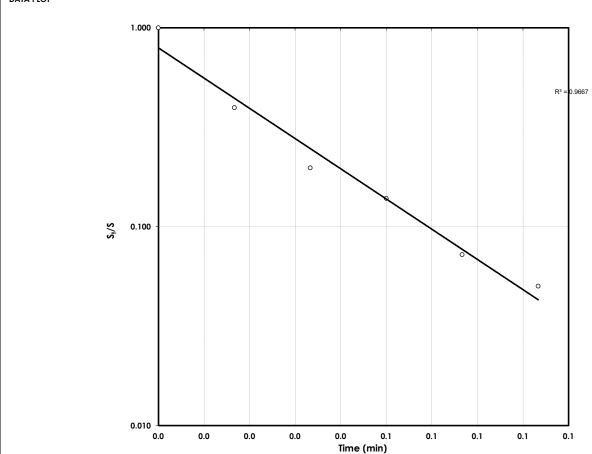
Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Single Bore Slug Test (Rising Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Gan Gan Road, Anna Bay, NSW Test Date 26/11/2024 Project P2208888 Field Testing **BTM** Project Ref MW03 (3) Data Analysis **BTM** Borehole Ref Hvorslev (1981) Reviewed **DS** Method FIELD TEST DATA



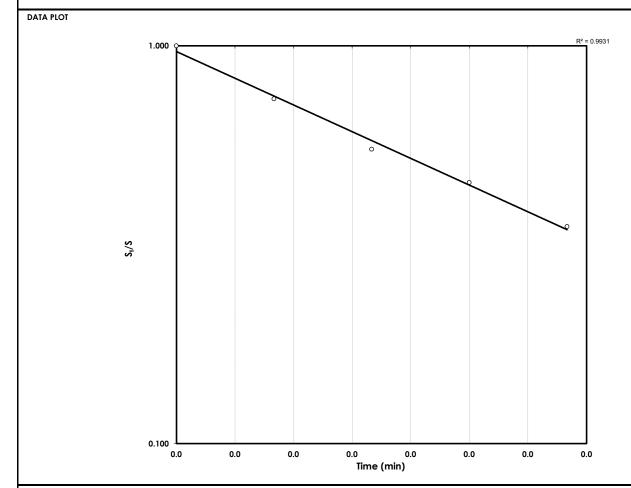
Head Office

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,


Single Bore Slug Test (Falling Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Gan Gan Road, Anna Bay, NSW Test Date **7/12/2022** Project P2208888 Field Testing **DS** Project Ref MW04 (1) Data Analysis **DS** Borehole Ref Hvorslev (1981) Reviewed JF Method FIELD TEST DATA **FACTOR Enter Data** Unit Ground surface 3.270 H - Initial water level reading (depth) m Casing h_o - Water level reading at time = 0 (depth) 3.651 m Capping 0.025 r - Casing radius m Borehole R - Bore radius 0.050 m Screen L - Length of open screen 3.20 Filter Pack T_o - Length of characteristic time 0.03 minutes K_{sat} - Saturated hydraulic conductivity 20.3995 m/d Saturated zone DATA PLOT 1.000

Head Office

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,


Single Bore Slug Test (Rising Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Test Date **25/05/2023** Gan Gan Road, Anna Bay, NSW Project P2208888 Field Testing **BTM** Project Ref MW04 (2) Data Analysis **DS** Borehole Ref Hvorslev (1981) Reviewed JF Method FIELD TEST DATA **FACTOR Enter Data** Unit Ground surface 2.590 H - Initial water level reading (depth) m Casing h_o - Water level reading at time = 0 (depth) 2.466 m Capping 0.025 r - Casing radius m Borehole R - Bore radius 0.050 m Screen L - Length of open screen 3.20 Filter Pack ${\rm T_o}$ - Length of characteristic time 0.02 minutes K_{sat} - Saturated hydraulic conductivity 26.8609 m/d Saturated zone DATA PLOT 1.000

Head Office

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Single Bore Slug Test (Rising Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Gan Gan Road, Anna Bay, NSW Test Date 26/11/2024 Project P2208888 Field Testing **BTM** Project Ref MW04 (3) Data Analysis **BTM** Borehole Ref Hvorslev (1981) Reviewed **DS** Method FIELD TEST DATA **FACTOR Enter Data** Unit Ground surface 2.990 H - Initial water level reading (depth) m Casing h_o - Water level reading at time = 0 (depth) 3.087 m Capping 0.025 r - Casing radius m Borehole R - Bore radius 0.050 m Screen L - Length of open screen 3.20 Filter Pack ${\rm T_o}$ - Length of characteristic time 0.03 minutes

18.8262

m/d

K_{sat} - Saturated hydraulic conductivity

Head Office

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Saturated zone

Single Bore Slug Test (Falling Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Gan Gan Road, Anna Bay, NSW Test Date **7/12/2022** Project P2208888 Field Testing **DS** Project Ref MW05 (1) Data Analysis **DS** Borehole Ref Hvorslev (1981) Reviewed JF Method FIELD TEST DATA **FACTOR Enter Data** Unit Ground surface 3.380 H - Initial water level reading (depth) m Casing h_o - Water level reading at time = 0 (depth) 4.359 m Capping 0.025 r - Casing radius m Borehole R - Bore radius 0.050 m Screen L - Length of open screen 3.40 Filter Pack ${\rm T_o}$ - Length of characteristic time 0.07 minutes K_{sat} - Saturated hydraulic conductivity 7.8315 m/d Saturated zone DATA PLOT 1.000 0.9791 0.100 0.010 0.1 0.1 0.2 0.2 0.0 0.3 Time (min)

Head Office

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Single Bore Slug Test (Rising Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Test Date **25/05/2023** Gan Gan Road, Anna Bay, NSW Project P2208888 Field Testing **BTM** Project Ref MW05 (2) Data Analysis **DS** Borehole Ref Hvorslev (1981) Reviewed JF Method FIELD TEST DATA **FACTOR Enter Data** Unit Ground surface 3.420 H - Initial water level reading (depth) m Casing h_o - Water level reading at time = 0 (depth) 2.805 m Capping 0.025 r - Casing radius m Borehole R - Bore radius 0.050 m Screen L - Length of open screen 3.40 Filter Pack ${\rm T_o}$ - Length of characteristic time 0.07 minutes K_{sat} - Saturated hydraulic conductivity 8.1452 m/d Saturated zone DATA PLOT 1.000 0.9157 0 0 0.100 0.010 0.1 0.1 0.2 0.2 0.0 0.3 Time (min)

Head Office

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Single Bore Slug Test (Falling Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Gan Gan Road, Anna Bay, NSW Test Date **7/12/2022** Project P2208888 Field Testing **DS** Project Ref MW06 (1) Data Analysis **DS** Borehole Ref Hvorslev (1981) Reviewed JF Method FIELD TEST DATA **FACTOR Enter Data** Unit Ground surface 3.540 H - Initial water level reading (depth) m Casing h_o - Water level reading at time = 0 (depth) 3.902 m Capping 0.025 r - Casing radius m Borehole R - Bore radius 0.050 m Screen L - Length of open screen 3.10 Filter Pack ${\rm T_o}$ - Length of characteristic time 0.10 minutes K_{sat} - Saturated hydraulic conductivity 5.9575 m/d Saturated zone DATA PLOT 1.000 0 0.100

0.010

0.0

0.1

0.1

Time (min)

0.2

0.2

Head Office

0.3

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Single Bore Slug Test (Falling Head) Method ST-13 Revised 7.3.2007

PROJECT DETAILS

Project
Project Ref
Borehole Ref
Method

Gan Gan Road, Anna Bay, NSW
P2208888
MW06 (2)
Hvorslev (1981)

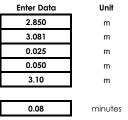
Test Date 26/11/2024
Field Testing BTM
Data Analysis BTM
Reviewed DS

martens

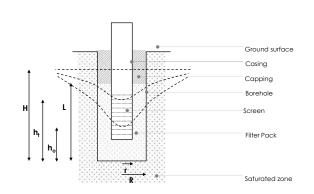
FIELD TEST DATA

FACTOR

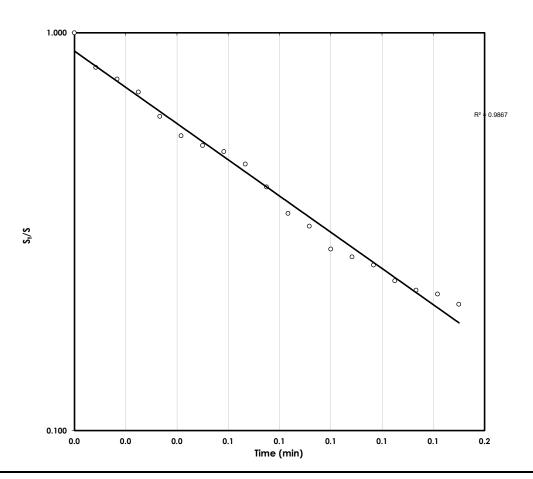
 $\rm H$ - Initial water level reading (depth) $\rm h_{o}$ - Water level reading at time = 0 (depth)


r - Casing radius

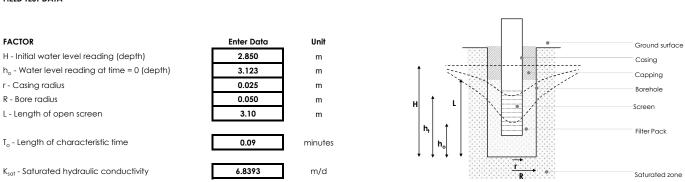
R - Bore radius

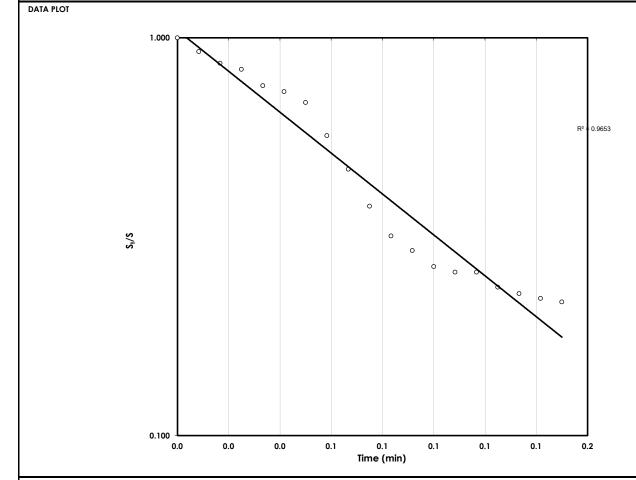

L - Length of open screen

T_o - Length of characteristic time


 K_{sat} - Saturated hydraulic conductivity

7.0722 m/d

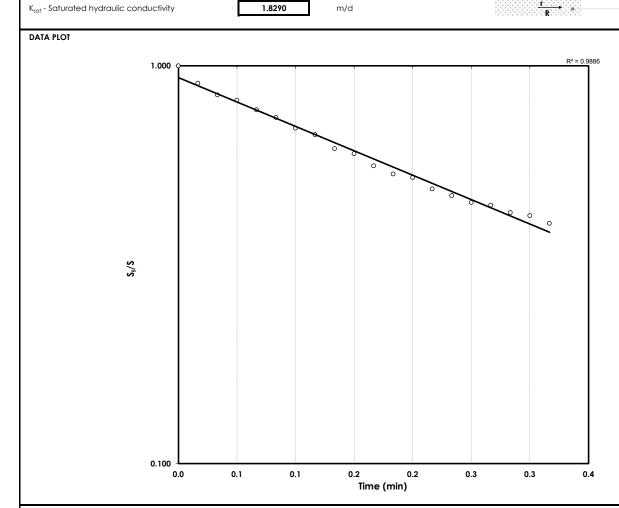

DATA PLOT



Head Office

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Single Bore Slug Test (Falling Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Gan Gan Road, Anna Bay, NSW Test Date 26/11/2024 Project P2208888 Field Testing **BTM** Project Ref MW06 (3) Data Analysis **BTM** Borehole Ref Hvorslev (1981) Reviewed **DS** Method FIELD TEST DATA



Head Office

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Single Bore Slug Test (Falling Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Gan Gan Road, Anna Bay, NSW Test Date **7/12/2022** Project P2208888 Field Testing **DS** Project Ref MW07 (1) Data Analysis **DS** Borehole Ref Hvorslev (1981) Reviewed JF Method FIELD TEST DATA **FACTOR Enter Data** Unit Ground surface 1.680 H - Initial water level reading (depth) m Casing h_o - Water level reading at time = 0 (depth) 1.838 m Capping 0.025 r - Casing radius m Borehole R - Bore radius 0.050 m Screen L - Length of open screen 3.10 Filter Pack

minutes

0.33

 ${\rm T_o}$ - Length of characteristic time

Head Office

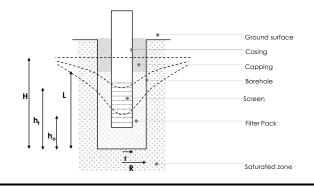
Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Saturated zone

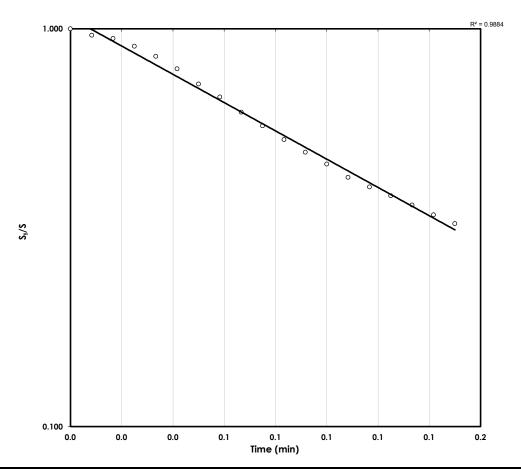
Single Bore Slug Test (Falling Head) Method ST-13 Revised 7.3.2007

PROJECT DETAILS

Project
Project Ref
Borehole Ref
Method


Gan Gan Road, Anna Bay, NSW
P2208888
MW07 (2)
Hvorslev (1981)

Test Date 26/11/2024
Field Testing BTM
Data Analysis BTM
Reviewed DS

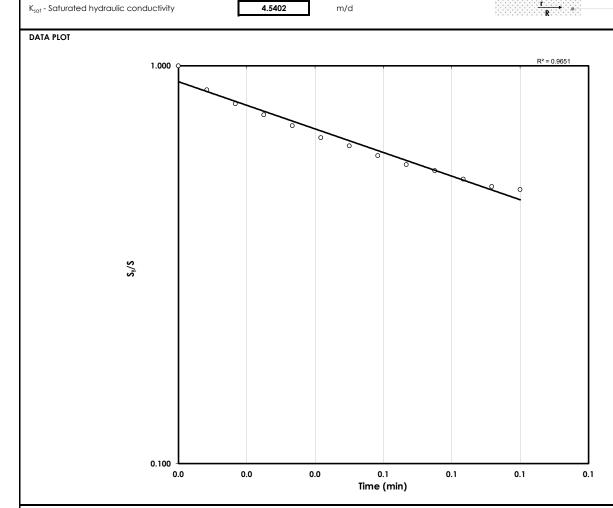

martens consulting engine

FIELD TEST DATA

Enter Data	Unit
0.830	m
1.241	m
0.025	m
0.050	m
3.10	m
0.13	minutes
4.6352	m/d
	0.830 1.241 0.025 0.050 3.10

DATA PLOT

Head Office


Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Single Bore Slug Test (Falling Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Gan Gan Road, Anna Bay, NSW Test Date 26/11/2024 Project P2208888 Field Testing **BTM** Project Ref MW07 (3) Data Analysis **BTM** Borehole Ref Hvorslev (1981) Reviewed **DS** Method FIELD TEST DATA **FACTOR Enter Data** Unit Ground surface 0.830 H - Initial water level reading (depth) m Casing h_o - Water level reading at time = 0 (depth) 1.099 m Capping

m

m

minutes

0.025

0.050

3.10

0.13

r - Casing radius

L - Length of open screen

 ${\rm T_o}$ - Length of characteristic time

R - Bore radius

Head Office

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Borehole

Filter Pack

Saturated zone

Screen

Single Bore Slug Test (Falling Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Test Date **25/05/2023** Gan Gan Road, Anna Bay, NSW Project P2208888 Field Testing **BTM** Project Ref MW08 (1) Data Analysis **DS** Borehole Ref Hvorslev (1981) Reviewed JF Method FIELD TEST DATA **FACTOR Enter Data** Unit Ground surface 3.730 H - Initial water level reading (depth) m Casing h_o - Water level reading at time = 0 (depth) 0.411 m Capping 0.025 r - Casing radius m Borehole R - Bore radius 0.050 m Screen L - Length of open screen 1.50 Filter Pack 165.14 ${\rm T_o}$ - Length of characteristic time minutes K_{sat} - Saturated hydraulic conductivity 0.0062 m/d Saturated zone DATA PLOT R² = 0.9993 1.000

0.100

0.0

2.0

4.0

6.0

8.0

Time (min)

10.0

12.0

14.0

16.0

Head Office

18.0

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Single Bore Slug Test (Falling Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Test Date **25/05/2023** Gan Gan Road, Anna Bay, NSW Project P2208888 Field Testing **BTM** Project Ref MW08 (2) Data Analysis **DS** Borehole Ref Hvorslev (1981) Reviewed JF Method FIELD TEST DATA **FACTOR Enter Data** Unit Ground surface 3.570 H - Initial water level reading (depth) m Casing h_o - Water level reading at time = 0 (depth) 0.170 m Capping 0.025 r - Casing radius m Borehole R - Bore radius 0.050 m Screen L - Length of open screen 1.50 Filter Pack 157.35 ${\rm T_o}$ - Length of characteristic time minutes K_{sat} - Saturated hydraulic conductivity 0.0065 m/d Saturated zone DATA PLOT R² = 0.9971 1.000

0.100

0.0

2.0

4.0

6.0

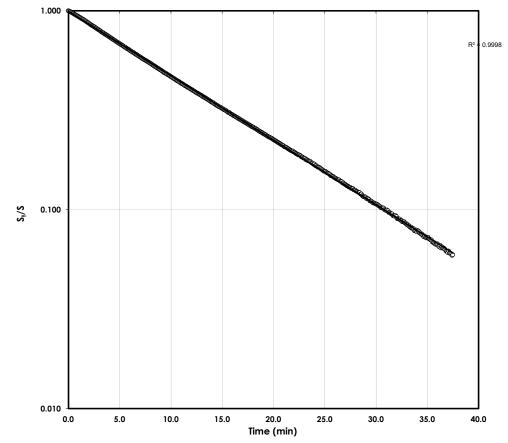
8.0

Time (min)

10.0

12.0

14.0


16.0

Head Office

18.0

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Single Bore Slug Test (Falling Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Test Date **25/05/2023** Gan Gan Road, Anna Bay, NSW Project P2208888 Field Testing **BTM** Project Ref MW09 (1) Data Analysis **DS** Borehole Ref Hvorslev (1981) Reviewed JF Method FIELD TEST DATA **FACTOR Enter Data** Unit Ground surface 3.870 H - Initial water level reading (depth) m Casing h_o - Water level reading at time = 0 (depth) 1.224 m Capping 0.025 r - Casing radius m Borehole R - Bore radius 0.050 m Screen L - Length of open screen 1.50 Filter Pack 13.25 ${\rm T_o}$ - Length of characteristic time minutes K_{sat} - Saturated hydraulic conductivity 0.0770 m/d Saturated zone DATA PLOT 1.000 R² 0.9998

Head Office

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Single Bore Slug Test (Falling Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Test Date **25/05/2023** Gan Gan Road, Anna Bay, NSW Project P2208888 Field Testing **BTM** Project Ref MW09 (2) Data Analysis **DS** Borehole Ref Hvorslev (1981) Reviewed JF Method FIELD TEST DATA **FACTOR Enter Data** Unit Ground surface 3.830 H - Initial water level reading (depth) m Casing h_o - Water level reading at time = 0 (depth) 0.651 m Capping 0.025 r - Casing radius m Borehole R - Bore radius 0.050 m Screen L - Length of open screen 1.50 Filter Pack 14.15 ${\rm T_o}$ - Length of characteristic time minutes K_{sat} - Saturated hydraulic conductivity 0.0721 m/d Saturated zone DATA PLOT $R^2 = 0.999$ 1.000

0.100

0.0

1.0

2.0

3.0

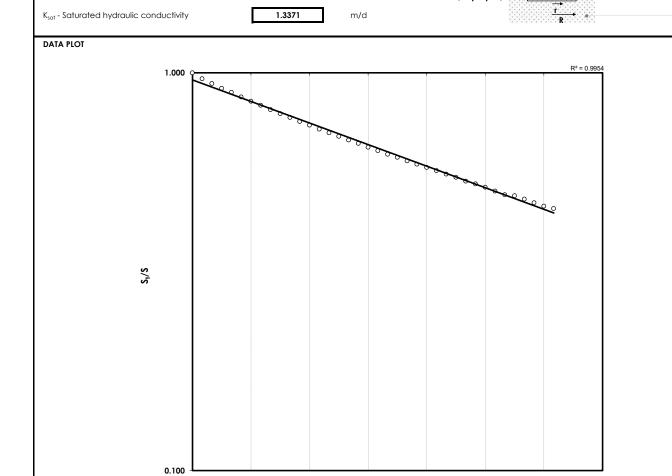
Time (min)

4.0

5.0

Head Office

6.0


Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Single Bore Slug Test (Falling Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Test Date **25/05/2023** Gan Gan Road, Anna Bay, NSW Project P2208888 Field Testing **BTM** Project Ref MW10 (1) Data Analysis **DS** Borehole Ref Hvorslev (1981) Reviewed JF Method FIELD TEST DATA **FACTOR Enter Data** Unit Ground surface 3.060 H - Initial water level reading (depth) m Casing h_o - Water level reading at time = 0 (depth) 0.445 m

m

m

minutes

0.1

0.0

0.2

0.3

0.4

Time (min)

0.5

0.6

0.025

0.050

1.50

0.76

r - Casing radius

L - Length of open screen

 ${\rm T_o}$ - Length of characteristic time

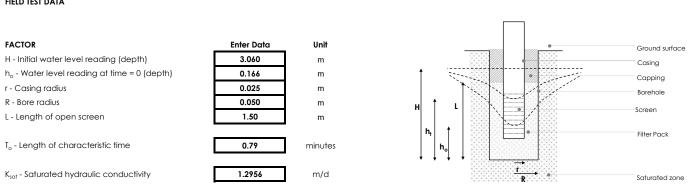
R - Bore radius

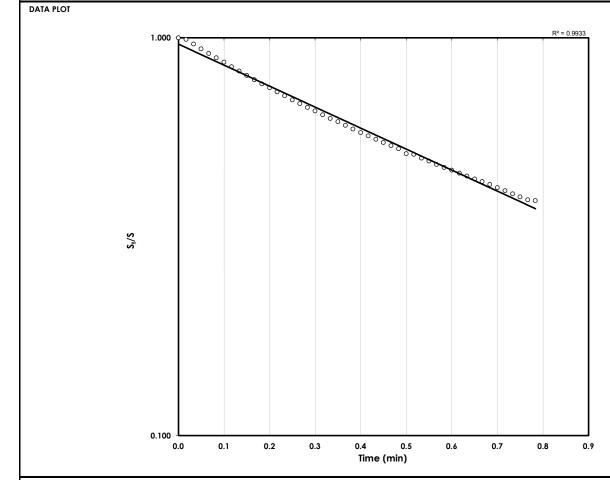
Head Office

0.7

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Capping

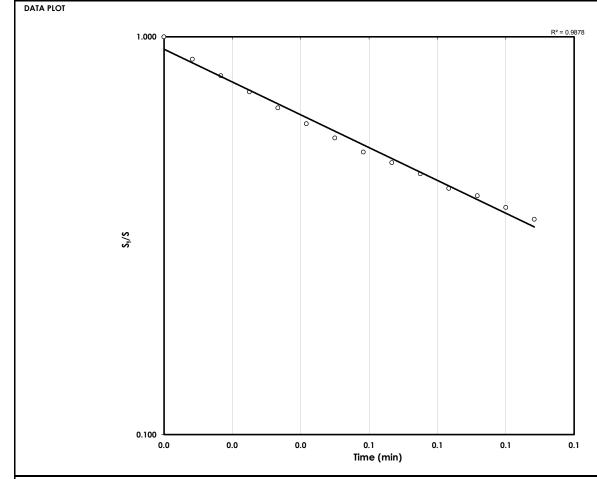

Borehole


Filter Pack

Saturated zone

Screen

Single Bore Slug Test (Falling Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Test Date **25/05/2023** Gan Gan Road, Anna Bay, NSW Project P2208888 Field Testing **BTM** Project Ref MW10 (2) Data Analysis **DS** Borehole Ref Hvorslev (1981) Reviewed **JF** Method FIELD TEST DATA

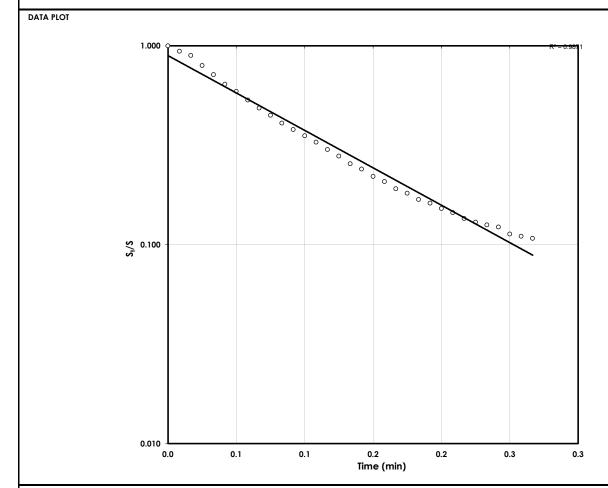


Head Office

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Single Bore Slug Test (Falling Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Gan Gan Road, Anna Bay, NSW Test Date 26/11/2024 Project P2208888 Field Testing **BTM** Project Ref MW11 (1) Data Analysis **BTM** Borehole Ref Hvorslev (1981) Reviewed **DS** Method FIELD TEST DATA

FACTOR Enter Data Unit Ground surface 2.920 H - Initial water level reading (depth) Casing h_o - Water level reading at time = 0 (depth) 3.321 m Capping 0.025 r - Casing radius m R - Bore radius 0.050 m L - Length of open screen 1.50 Filter Pack T_o - Length of characteristic time 0.10 minutes K_{sat} - Saturated hydraulic conductivity 10.5052 m/d Saturated zone

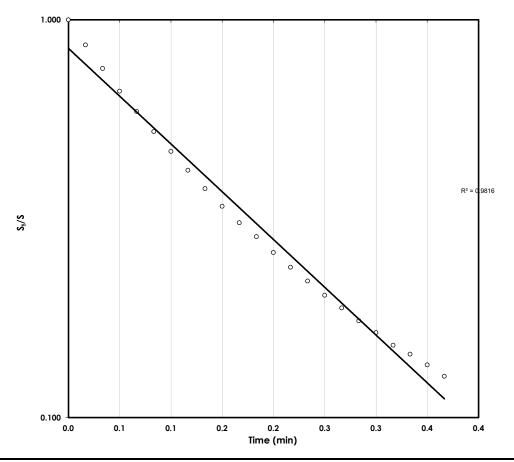

Head Office

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Single Bore Slug Test (Falling Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Project Gan Gan Road, Anna Bay, NSW Project Ref P2208888 Borehole Ref MW11 (2) Method Hvorslev (1981) Single Bore Slug Test (Falling Head) Test Date 26/11/2024 Field Testing BTM Data Analysis BTM Reviewed DS

FIELD TEST DATA

FACTOR Enter Data Unit Ground surface 2.920 H - Initial water level reading (depth) Casing h_o - Water level reading at time = 0 (depth) 3.339 m Capping 0.025 r - Casing radius m R - Bore radius 0.050 m L - Length of open screen 1.50 Filter Pack ${\rm T_o}$ - Length of characteristic time 0.10 minutes K_{sat} - Saturated hydraulic conductivity 10.0354 m/d Saturated zone

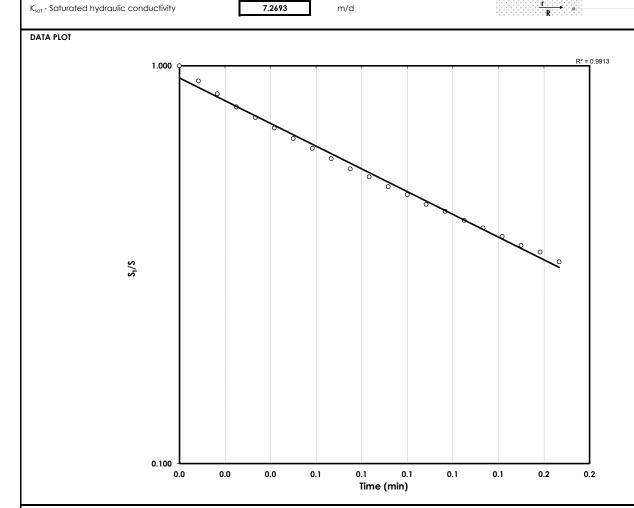

Head Office

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Single Bore Slug Test (Falling Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Test Date **25/05/2023** Gan Gan Road, Anna Bay, NSW Project P2208888 Field Testing **BTM** Project Ref MW12 (1) Data Analysis **DS** Borehole Ref Hvorslev (1981) Reviewed JF Method FIELD TEST DATA

FACTOR Enter Data Unit Ground surface 2.300 H - Initial water level reading (depth) m Casing h_o - Water level reading at time = 0 (depth) 1.348 m Capping 0.025 r - Casing radius m Borehole R - Bore radius 0.050 m Screen L - Length of open screen 1.50 Filter Pack T_o - Length of characteristic time 0.15 minutes K_{sat} - Saturated hydraulic conductivity 6.8116 m/d Saturated zone

DATA PLOT


Head Office

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Single Bore Slug Test (Falling Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Test Date **25/05/2023** Gan Gan Road, Anna Bay, NSW Project Field Testing **BTM** P2208888 Project Ref MW12 (2) Data Analysis **DS** Borehole Ref Hvorslev (1981) Reviewed JF Method FIELD TEST DATA **FACTOR Enter Data** Unit Ground surface 2.300 H - Initial water level reading (depth) m Casing h_o - Water level reading at time = 0 (depth) 1.564 m Capping 0.025 r - Casing radius m Borehole

m

minutes

0.050

1.50

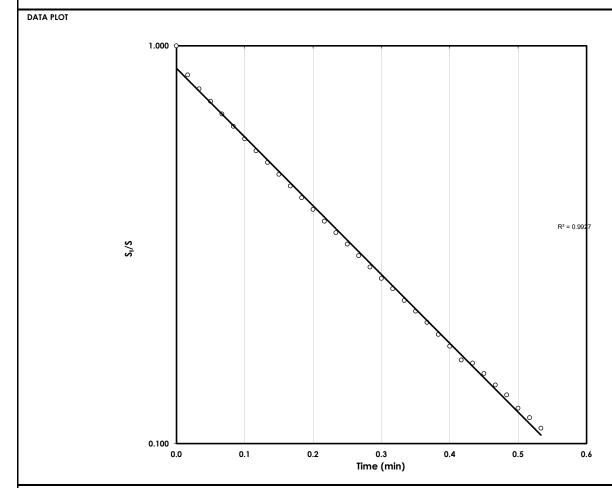
0.14

R - Bore radius

L - Length of open screen

 ${\rm T_o}$ - Length of characteristic time

Head Office

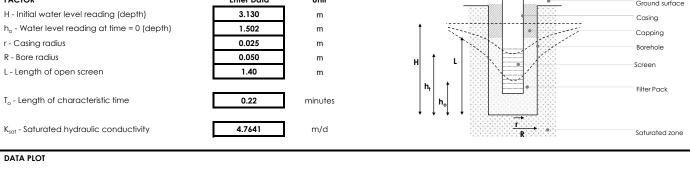

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

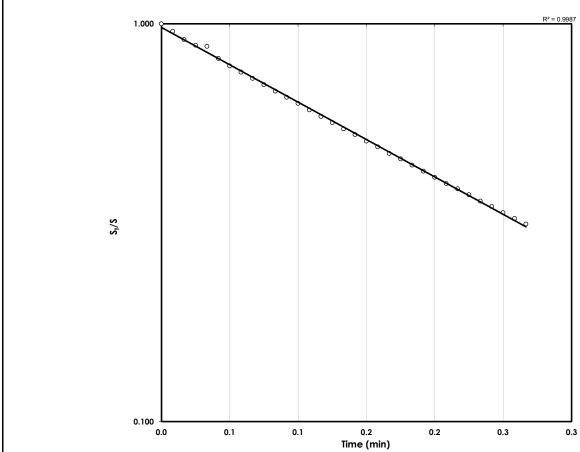
Screen

Filter Pack

Saturated zone

Single Bore Slug Test (Falling Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Gan Gan Road, Anna Bay, NSW Test Date **25/05/2023** Project Field Testing **BTM** P2208888 Project Ref MW13 (1) Data Analysis **DS** Borehole Ref Hvorslev (1981) Reviewed JF Method FIELD TEST DATA **FACTOR Enter Data** Unit Ground surface 3.130 H - Initial water level reading (depth) m Casing h_o - Water level reading at time = 0 (depth) 1.155 m Capping 0.025 r - Casing radius m Borehole R - Bore radius 0.050 m Screen L - Length of open screen 1.40 Filter Pack T_o - Length of characteristic time 0.22 minutes K_{sat} - Saturated hydraulic conductivity 4.9345 m/d




Head Office

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Saturated zone

Single Bore Slug Test (Falling Head) Method ST-13 Revised 7.3.2007 PROJECT DETAILS Gan Gan Road, Anna Bay, NSW Test Date **25/05/2023** Project Field Testing **BTM** P2208888 Project Ref MW13 (2) Data Analysis **DS** Borehole Ref Hvorslev (1981) Reviewed JF Method FIELD TEST DATA **FACTOR Enter Data** Unit Ground surface 3.130 H - Initial water level reading (depth) m Casing h_o - Water level reading at time = 0 (depth) 1.502 m Capping m

Head Office

Suite 201, 20 George Street Hornsby, NSW 2077 Ph: (02) 9476 9999 Fax: (02) 9476 8767,

Appendix F - Laboratory Summary Table

	[Inorganics															Metals										
		ardness (filtered)	ectrical Conductivity (Non Compensated)	Ikalinity (Bicarbonate as CaCO3)	Ikalinity (total) as CaCO3	hloride	nic Balance	н (Lab)	odium (filtered)	ulphate	Numinium (filtered)	intimony (filtered)	rsenic (filtered)	arium (filtered)	oron (filtered)	admium (filtered)	alcium (filtered)	nromium (III+VI) (filtered)	obalt (filtered)	opper (filtered)	on (filtered)	sad (filtered)	lagnesium (filtered)	langanese (filtered)	lolybdenum (filtered)	ickel (filtered)	otassium (filtered)	n (filtered)	ranium (filtered)	anadium (filtered)	nc (filtered)
	ا	ngCaCO3/	Ш μS/cm	₹ mg/L	₹ mg/L	mg/L	<u>º</u> %	<u>a</u>	ကg/L	ಸ mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	<u>≟</u> mg/L	mg/L	≥ mg/L	≥ mg/L	≥ mg/L	mg/L	mg/L	r≡ mg/L	⊃ μg/L	mg/L	mg/L
EQL		ligCaCO3/	μ3/cm 1	5	5	1	/0	-	0.5	1	0.01	0.001	0.001	0.001	0.02	0.0001	0.5	0.001	0.001	0.001	0.01	0.001	0.5	0.005	0.001	0.001	0.5	0.001	0.5	0.001	0.001
ANZG Freshwater Toxicant DGVs LOSP 95% (Ju	uly 2023)			3	3	-			0.5		0.055	0.001	0.001	0.001	0.94	0.0002	0.5	0.001	0.001	0.0014	0.01	0.0034	0.5	1.9	0.001	0.011	0.5	0.001	0.5	0.001	0.008
THE TESTIVATE TOXICATE DOVE 2001 9570 (1)	20201										0.033				0.54	0.0002				3.0014		3.0034		1.5		0.011					0.000
Field ID	Date																														
MW01	14 Dec 2022	8.70	130	10	10	19	0	5.4	18	12	< 0.01	< 0.001	< 0.001	0.002	< 0.02	< 0.0001	2	< 0.001	< 0.001	0.002	< 0.01	< 0.001	0.9	< 0.005	< 0.001	< 0.001	< 0.5	< 0.001	< 0.5	< 0.001	0.004
MW02	14 Dec 2022	44	230	22	22	32	2	5.9	19	21	< 0.01	< 0.001	0.009	0.005	0.03	< 0.0001	13	< 0.001	< 0.001	0.006	< 0.01	< 0.001	3	0.017	0.009	0.002	7.4	< 0.001	< 0.5	< 0.001	0.016
MW03	14 Dec 2022	66	370	23	23	77	-1	5.7	29	7	< 0.01	< 0.001	< 0.001	0.013	0.02	< 0.0001	13	< 0.001	< 0.001	0.002	< 0.01	< 0.001	8.3	0.006	< 0.001	< 0.001	5	< 0.001	< 0.5	< 0.001	0.015
MW04	14 Dec 2022	27	390	7	7	84	-3	5.3	46	13	< 0.01	< 0.001	< 0.001	0.009	0.02	< 0.0001	2	< 0.001	< 0.001	0.005	< 0.01	< 0.001	5.1	< 0.005	< 0.001	< 0.001	3	< 0.001	< 0.5	< 0.001	0.007
MW05	14 Dec 2022	34	130	19	19	13	6	5.6	8.3	12	< 0.01	0.002	0.004	0.007	< 0.02	0.0001	9.7	0.001	0.001	0.002	< 0.01	< 0.001	2	0.005	0.036	0.003	3	< 0.001	< 0.5	< 0.001	0.022
MW06	14 Dec 2022	31	180	18	18	33	0	5.9	18	5	< 0.01	< 0.001	< 0.001	0.002	0.09	< 0.0001	6.5	< 0.001	< 0.001	0.003	< 0.01	< 0.001	4	0.005	0.001	< 0.001	1	< 0.001	< 0.5	< 0.001	0.005
MW07	14 Dec 2022																					-0.004	0.9	0.028	< 0.001	0.004	3	< 0.001	< 0.5	< 0.001	0.027
	14 Dec 2022	23	110	12	12	13	9	5.4	8.9	8	< 0.01	< 0.001	0.002	0.001	0.03	< 0.0001	7.9	< 0.001	< 0.001	0.004	< 0.01	< 0.001	0.9	0.028	<0.001	0.004	3				
MW08	15 Feb 2023	23 88	110 360	12 99	12 99	13 53	9 -4	5.4 6.8	8.9 31	8	<0.01 0.01	<0.001	0.002 <0.001	0.001	0.03 0.06	<0.0001 <0.0001	7.9 27	<0.001 <0.001	<0.001	0.004	<0.01	<0.001	5.2	0.028	0.001	<0.004	4	< 0.001	0.8	< 0.001	0.006
MW08 MW09											_																Ů	<0.001 <0.001	0.8 <0.5	<0.001 <0.001	0.006 0.006
	15 Feb 2023	88	360	99	99	53	-4	6.8	31	2	0.01	<0.001	<0.001	0.003	0.06	<0.0001	27	< 0.001	<0.001	0.002	0.05	<0.001		0.031	0.001	<0.001	Ů				
MW09	15 Feb 2023 15 Feb 2023	88 19	360 200	99 11	99 11	53 53	-4 -2	6.8 5.9	31 28	2 <1	0.01 <0.01	<0.001 <0.001	<0.001	0.003 <0.001	0.06 <0.02	<0.0001	27 3	<0.001 <0.001	<0.001 <0.001	0.002 0.001	0.05 <0.01	<0.001	5.2	0.031 0.006	0.001	<0.001	4 2	<0.001	< 0.5	<0.001	0.006
MW09 MW10	15 Feb 2023 15 Feb 2023 15 Feb 2023	88 19 29	360 200 240	99 11 18	99 11 18	53 53 57	-4 -2 -2	6.8 5.9 6.1	31 28 30	2 <1 4	0.01 <0.01 0.04	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	0.003 <0.001 <0.001	0.06 <0.02 0.04	<0.0001 <0.0001 <0.0001	27 3 5	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	0.002 0.001 0.003	0.05 <0.01 0.04	<0.001 <0.001 <0.001	5.2 3 4	0.031 0.006 0.01	0.001 0.002 <0.001	<0.001 <0.001 0.002	4 2 3	<0.001 0.002	<0.5 <0.5	<0.001 <0.001	0.006 0.011
MW09 MW10 MW11	15 Feb 2023 15 Feb 2023 15 Feb 2023 15 Feb 2023	88 19 29 51	360 200 240 420	99 11 18 25	99 11 18 25	53 53 57 100	-4 -2 -2 -6	6.8 5.9 6.1 6.2	31 28 30 48	2 <1 4 10	0.01 <0.01 0.04 0.03	<0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 0.006	0.003 <0.001 <0.001 0.024	0.06 <0.02 0.04 <0.02	<0.0001 <0.0001 <0.0001 <0.0001	27 3 5 8.9	<0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 <0.001	0.002 0.001 0.003 0.001	0.05 <0.01 0.04 1.1	<0.001 <0.001 <0.001 <0.001	5.2 3 4 6.9	0.031 0.006 0.01 0.022	0.001 0.002 <0.001 0.001	<0.001 <0.001 0.002 0.002	4 2 3	<0.001 0.002 0.005	<0.5 <0.5 <0.5	<0.001 <0.001 <0.001	0.006 0.011 0.025
MW09 MW10 MW11 MW12	15 Feb 2023 15 Feb 2023 15 Feb 2023 15 Feb 2023 15 Feb 2023	88 19 29 51 13	360 200 240 420 100	99 11 18 25 <5	99 11 18 25 <5	53 53 57 100 21	-4 -2 -2 -6 9	6.8 5.9 6.1 6.2 4.9	31 28 30 48 12	2 <1 4 10 3	0.01 <0.01 0.04 0.03 0.26	<0.001 <0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 0.006 <0.001	0.003 <0.001 <0.001 0.024 0.003	0.06 <0.02 0.04 <0.02 <0.02	<0.0001 <0.0001 <0.0001 <0.0001 <0.0001	27 3 5 8.9 2	<0.001 <0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 <0.001 0.001	0.002 0.001 0.003 0.001 <0.001	0.05 <0.01 0.04 1.1 0.41	<0.001 <0.001 <0.001 <0.001 <0.001	5.2 3 4 6.9 2	0.031 0.006 0.01 0.022 0.019	0.001 0.002 <0.001 0.001 0.005	<0.001 <0.001 0.002 0.002 0.006	4 2 3 4 1	<0.001 0.002 0.005 <0.001	<0.5 <0.5 <0.5	<0.001 <0.001 <0.001 0.006	0.006 0.011 0.025 0.005
MW09 MW10 MW11 MW12 MW13	15 Feb 2023 15 Feb 2023 15 Feb 2023 15 Feb 2023 15 Feb 2023 15 Feb 2023	88 19 29 51 13 100	360 200 240 420 100 1,600	99 11 18 25 <5	99 11 18 25 <5	53 53 57 100 21 470	-4 -2 -2 -6 9	6.8 5.9 6.1 6.2 4.9	31 28 30 48 12 280	2 <1 4 10 3 46	0.01 <0.01 0.04 0.03 0.26 0.02	<0.001 <0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 0.006 <0.001 <0.001	0.003 <0.001 <0.001 0.024 0.003 0.037	0.06 <0.02 0.04 <0.02 <0.02 0.1	<0.0001 <0.0001 <0.0001 <0.0001 <0.0001	27 3 5 8.9 2 11	<0.001 <0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 <0.001 0.001	0.002 0.001 0.003 0.001 <0.001	0.05 <0.01 0.04 1.1 0.41 0.16	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001	5.2 3 4 6.9 2 18	0.031 0.006 0.01 0.022 0.019 0.024	0.001 0.002 <0.001 0.001 0.005	<0.001 <0.001 0.002 0.002 0.006 0.002	3 3 4 1	<0.001 0.002 0.005 <0.001 0.007	<0.5 <0.5 <0.5 2.9	<0.001 <0.001 <0.001 0.006 <0.001	0.006 0.011 0.025 0.005 0.039
MW09 MW10 MW11 MW12 MW13 SW01	15 Feb 2023 15 Feb 2023 15 Feb 2023 15 Feb 2023 15 Feb 2023 15 Feb 2023	88 19 29 51 13 100	360 200 240 420 100 1,600	99 11 18 25 <5	99 11 18 25 <5	53 53 57 100 21 470	-4 -2 -2 -6 9	6.8 5.9 6.1 6.2 4.9	31 28 30 48 12 280	2 <1 4 10 3 46	0.01 <0.01 0.04 0.03 0.26 0.02	<0.001 <0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 0.006 <0.001 <0.001	0.003 <0.001 <0.001 0.024 0.003 0.037	0.06 <0.02 0.04 <0.02 <0.02 0.1 <0.02	<0.0001 <0.0001 <0.0001 <0.0001 <0.0001	27 3 5 8.9 2 11	<0.001 <0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001	0.002 0.001 0.003 0.001 <0.001	0.05 <0.01 0.04 1.1 0.41 0.16	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001	5.2 3 4 6.9 2 18	0.031 0.006 0.01 0.022 0.019 0.024	0.001 0.002 <0.001 0.001 0.005	<0.001 <0.001 0.002 0.002 0.006 0.002	3 3 4 1	<0.001 0.002 0.005 <0.001 0.007	<0.5 <0.5 <0.5 2.9	<0.001 <0.001 <0.001 0.006 <0.001 <0.001	0.006 0.011 0.025 0.005 0.039

Appendix G - Laboratory Documentation

WATER SAMPLING CHAIN OF CUSTODY FORM

						١	Nater Te	esting								_	_		
Name	P2208888	8: Gan Gan F	load, A	Anna Bo	ay NSW														
Martens Contact Officer	Dean Sh	i	_				_		Contact Email			dshi@martens.com.au							
	Sample	14/1	14/12/2022				Dispatch Date		20/12/2022			Turnaround Time			standard				
Sampling and Shipping	Our Refe	erence	P220	P2208888COC04V1					Shipping Method (X)			н	and	Post		Courier	х		
	On Ice (X)		Х	X No Ice (X)			Other		r (X)										
							Laboro	tory							_				
Name	EnviroLa	b																	
Sample Delivery Address	12 Ashle	y Street, Cha	tswood	d															
Delivery Contact	Name	Sample Red	eipt		Phone	9	910 6200		Fax			Email	sampler	eceipt@en	virolabs	ervices.con	n.au		
Please Send Report By (X)	Post	F	ax.	1	Email	X	Re	porting	Email Add	lress		hi@martens.com.au Iton@martens.com.au							

Sample ID	рН	EC	Sonic Balance Suite	17 Dissolved HM*	HOLD
MW01	 x 	x	X	X	
MW02 Z	X	X	X	X	
MW03 3	x	X	X	X	
MW04 4	X	X	X	Χ,	
MW05 5	X	X	X	X	
MW06 b	X	X	X	X	
MW07 ¥	X	X	X	X	
DUPOI B	T				X

*Please filter for heavy metals from non-preservative bottles

Envirolab Sorvices 12 Ashley St Chatswood NSW 2067 Ph: (02) 9910 6200

Received By: 7) + 7W
Temp: God/Ambient
Cooling: technologisk

Security: Mack Broken None

Head Office Suite 201, Level 2, 20 George Street Hornsby NSW 2077, Australia Ph 02 9476 9999 Fax 02 9476 8767

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Dean Shi

Sample Login Details	
Your reference	P2208888, Gan Gan Rd Anna Bay NSW
Envirolab Reference	313617
Date Sample Received	20/12/2022
Date Instructions Received	20/12/2022
Date Results Expected to be Reported	06/01/2023

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	8 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	8
Cooling Method	Ice
Sampling Date Provided	YES

Comments
Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	Hd	Electrical Conductivity	Calcium - Dissolved	Potassium - Dissolved	Sodium - Dissolved	Magnesium - Dissolved	Hardness	Hydroxide Alkalinity (OH-) as CaCO3	Bicarbonate Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Sulphate, SO4	Chloride, CI	lonic Balance	All metals in water-dissolved
MW01	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
MW02	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
MW03	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
														_	
MW04	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	$ \checkmark $
MW04 MW05	✓	√	√	√	√	√	√	√	√	√ √	√	√	√	√	✓
	✓ ✓ ✓	✓ ✓ ✓		√ √	1	✓	✓	✓	√ √ √	✓	✓ ✓ ✓	✓ ✓ ✓	✓	✓ ✓ ✓	•
MW05	✓ ✓ ✓	✓ ✓ ✓	✓	√ √	✓	√ √	✓	√	✓	√	✓	✓ ✓ ✓	✓	✓	✓

The '\sqrt{'} indicates the testing you have requested. **THIS IS NOT A REPORT OF THE RESULTS.**

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 313617

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Dean Shi
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P2208888, Gan Gan Rd Anna Bay NSW
Number of Samples	8 Water
Date samples received	20/12/2022
Date completed instructions received	20/12/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details							
Date results requested by	06/01/2023						
Date of Issue	06/01/2023						
NATA Accreditation Number 2901. This document shall not be reproduced except in full.							
Accredited for compliance with ISO/	IEC 17025 - Testing. Tests not covered by NATA are denoted with *						

Results Approved By

Diego Bigolin, Inorganics Supervisor Loren Bardwell, Development Chemist Nick Sarlamis, Assistant Operation Manager **Authorised By**

Nancy Zhang, Laboratory Manager

Miscellaneous Inorganics						
Our Reference		313617-1	313617-2	313617-3	313617-4	313617-5
Your Reference	UNITS	MW01	MW02	MW03	MW04	MW05
Date Sampled		14/12/2022	14/12/2022	14/12/2022	14/12/2022	14/12/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	20/12/2022	20/12/2022	20/12/2022	20/12/2022	20/12/2022
Date analysed	-	20/12/2022	20/12/2022	20/12/2022	20/12/2022	20/12/2022
рН	pH Units	5.4	5.9	5.7	5.3	5.6
Electrical Conductivity	μS/cm	130	230	370	390	130

Miscellaneous Inorganics				
Our Reference		313617-6	313617-7	313617-8
Your Reference	UNITS	MW06	MW07	Dup01
Date Sampled		14/12/2022	14/12/2022	14/12/2022
Type of sample		Water	Water	Water
Date prepared	-	20/12/2022	20/12/2022	20/12/2022
Date analysed	-	20/12/2022	20/12/2022	20/12/2022
рН	pH Units	5.9	5.4	5.3
Electrical Conductivity	μS/cm	180	110	390

Ion Balance						
Our Reference		313617-1	313617-2	313617-3	313617-4	313617-5
Your Reference	UNITS	MW01	MW02	MW03	MW04	MW05
Date Sampled		14/12/2022	14/12/2022	14/12/2022	14/12/2022	14/12/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	20/12/2022	20/12/2022	20/12/2022	20/12/2022	20/12/2022
Date analysed	-	20/12/2022	20/12/2022	20/12/2022	20/12/2022	20/12/2022
Calcium - Dissolved	mg/L	2	13	13	2	9.7
Potassium - Dissolved	mg/L	1	7.4	5	3	3
Sodium - Dissolved	mg/L	18	19	29	46	8.3
Magnesium - Dissolved	mg/L	0.9	3	8.3	5.1	2
Hardness	mgCaCO 3 /L	8.7	44	66	27	34
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	10	22	23	7	19
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	10	22	23	7	19
Sulphate, SO4	mg/L	12	21	7	13	12
Chloride, Cl	mg/L	19	32	77	84	13
Ionic Balance	%	0	2.0	-1.0	-3.0	6.0

Ion Balance				
Our Reference		313617-6	313617-7	313617-8
Your Reference	UNITS	MW06	MW07	Dup01
Date Sampled		14/12/2022	14/12/2022	14/12/2022
Type of sample		Water	Water	Water
Date prepared	-	20/12/2022	20/12/2022	20/12/2022
Date analysed	-	20/12/2022	20/12/2022	20/12/2022
Calcium - Dissolved	mg/L	6.5	7.9	2
Potassium - Dissolved	mg/L	1	3	3
Sodium - Dissolved	mg/L	18	8.9	45
Magnesium - Dissolved	mg/L	4	0.9	5
Hardness	mgCaCO 3 /L	31	23	26
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	18	12	8
Carbonate Alkalinity as CaCO₃	mg/L	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	18	12	8
Sulphate, SO4	mg/L	5	8	13
Chloride, Cl	mg/L	33	13	85
Ionic Balance	%	0	9.0	-5.0

Our Reference		313617-1	313617-2	313617-3	313617-4	313617-5
Your Reference	UNITS	MW01	MW02	MW03	MW04	MW05
Date Sampled		14/12/2022	14/12/2022	14/12/2022	14/12/2022	14/12/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	22/12/2022	22/12/2022	22/12/2022	22/12/2022	22/12/2022
Date analysed	-	22/12/2022	22/12/2022	22/12/2022	22/12/2022	22/12/2022
Arsenic-Dissolved	μg/L	<1	9	<1	<1	4
Boron-Dissolved	μg/L	<20	30	20	20	<20
Barium-Dissolved	μg/L	2	5	13	9	7
Beryllium-Dissolved	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	0.1
Cobalt-Dissolved	μg/L	<1	<1	<1	<1	1
Chromium-Dissolved	μg/L	<1	<1	<1	<1	1
Copper-Dissolved	μg/L	2	6	2	5	2
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Manganese-Dissolved	μg/L	<5	17	6	<5	5
Molybdenum-Dissolved	μg/L	<1	9	<1	<1	36
Nickel-Dissolved	μg/L	<1	2	<1	<1	3
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Antimony-Dissolved	μg/L	<1	<1	<1	<1	2
Selenium-Dissolved	μg/L	<1	<1	<1	<1	<1
Tin-Dissolved	μg/L	<1	<1	<1	<1	<1
Zinc-Dissolved	μg/L	4	16	15	7	22

All metals in water-dissolved				
Our Reference		313617-6	313617-7	313617-8
Your Reference	UNITS	MW06	MW07	Dup01
Date Sampled		14/12/2022	14/12/2022	14/12/2022
Type of sample		Water	Water	Water
Date prepared	-	22/12/2022	22/12/2022	22/12/2022
Date analysed	-	22/12/2022	22/12/2022	22/12/2022
Arsenic-Dissolved	μg/L	<1	2	<1
Boron-Dissolved	μg/L	90	30	30
Barium-Dissolved	μg/L	2	1	9
Beryllium-Dissolved	μg/L	<0.5	<0.5	<0.5
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1
Cobalt-Dissolved	μg/L	<1	<1	<1
Chromium-Dissolved	μg/L	<1	<1	<1
Copper-Dissolved	μg/L	3	4	5
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05
Manganese-Dissolved	μg/L	5	28	<5
Molybdenum-Dissolved	μg/L	1	<1	<1
Nickel-Dissolved	μg/L	<1	4	<1
Lead-Dissolved	μg/L	<1	<1	<1
Antimony-Dissolved	μg/L	<1	<1	<1
Selenium-Dissolved	μg/L	<1	<1	<1
Tin-Dissolved	μg/L	<1	<1	<1
Zinc-Dissolved	μg/L	5	27	12

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 15% ie total anions = total cations +/-15%.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.

QUALITY CONTROL: Miscellaneous Inorganics						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			20/12/2022	1	20/12/2022	20/12/2022		20/12/2022	
Date analysed	-			20/12/2022	1	20/12/2022	20/12/2022		20/12/2022	
рН	pH Units		Inorg-001	[NT]	1	5.4	5.4	0	100	
Electrical Conductivity	μS/cm	1	Inorg-002	<1	1	130	130	0	100	[NT]

Envirolab Reference: 313617

Revision No: R00

QUAL	QUALITY CONTROL: Ion Balance						Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	313617-2
Date prepared	-			20/12/2022	1	20/12/2022	20/12/2022		20/12/2022	20/12/2022
Date analysed	-			20/12/2022	1	20/12/2022	20/12/2022		20/12/2022	20/12/2022
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	2	2	0	96	93
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	1	1	0	96	91
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	18	18	0	93	81
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	0.9	0.9	0	97	98
Hardness	mgCaCO 3 /L	3	Metals-020	[NT]	1	8.7	8.2	6	[NT]	[NT]
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	10	10	0	[NT]	[NT]
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]
Total Alkalinity as CaCO₃	mg/L	5	Inorg-006	<5	1	10	10	0	95	[NT]
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	12	12	0	90	111
Chloride, Cl	mg/L	1	Inorg-081	<1	1	19	19	0	88	80
Ionic Balance	%		Inorg-040	[NT]	1	0	0		[NT]	[NT]

QUALITY CO	ONTROL: All m	etals in w	ater-dissolved			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	313617-2	
Date prepared	-			22/12/2022	1	22/12/2022	22/12/2022		22/12/2022	22/12/2022	
Date analysed	-			22/12/2022	1	22/12/2022	22/12/2022		22/12/2022	22/12/2022	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	93	93	
Boron-Dissolved	μg/L	20	Metals-022	<20	1	<20	<20	0	104	93	
Barium-Dissolved	μg/L	1	Metals-022	<1	1	2	2	0	99	94	
Beryllium-Dissolved	μg/L	0.5	Metals-022	<0.5	1	<0.5	<0.5	0	120	114	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	95	94	
Cobalt-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	99	97	
Chromium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	94	91	
Copper-Dissolved	μg/L	1	Metals-022	<1	1	2	2	0	96	94	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	1	<0.05	[NT]		89	[NT]	
Manganese-Dissolved	μg/L	5	Metals-022	<5	1	<5	<5	0	96	98	
Molybdenum-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	89	86	
Nickel-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	91	90	
Lead-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	100	89	
Antimony-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	82	90	
Selenium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	93	92	
Tin-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	93	91	
Zinc-Dissolved	μg/L	1	Metals-022	<1	1	4	5	22	96	103	

Envirolab Reference: 313617 Page | 9 of 12 Revision No: R00

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Dissolved Metals:

- no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab. Note: there is a possibility some elements may be underestimated.

Envirolab Reference: 313617 Page | 12 of 12

Revision No: R00

WATER SAMPLING CHAIN OF CUSTODY FORM

				A	dditi	onal Water 1	esting							
Name	P220888	8: Gan Gan R	load, A	nna Bay NSW	/			-	-			<u> </u>		
Martens Contact Officer	Ali Kandil Contact Email akandil@martens.com.au													
· ·	Sample	Date	15-16/02/2023 Dispatch Date				17/02/20	17/02/2023			Turnaround Time			
Sampling and Shipping	Our Refe	erence	P2208	Shipping Method (X)		od	Н	and	Post	Courier	Х			
	On Ice (X)		X No Ice (X)			Othe	(X).					_ l <u></u>		1_
						Laboratory			,					
Name	EnviroLa	b		-	**	·								
Sample Delivery Address	12 Ashle	y Street, Chai	swood			-			-					
Delivery Contact	Name	Sample Rea	eipt	Phone	9	910 6200	Fax			Email samplereceipt@envirolabservices.com.au				
Please Send Report By (X)	Post	Fo	x	Email	х	Reportin	g Email Addr	ess I		indil@martens.com.au on@martens.com.au				

	Sample ID	pH	EC	Ionic Balance Suite	17 Dissolved HM*	HOLD
į	MW08	X	X	Х	X	
2	MW09	Χ	X	X	X	
3,	MW10	X	X	Х	X	
4	MW11	X_	X	X	Х .	-
5	MW12	X	X	X	X	- -
6	MW13	X	X	X	X	To the Consists
フ	SW01	X	Х	X	X	Envirolah Services 12 Ashley St

*Please filter for heavy metals from non-preservative bottles

Chatswood MSW 2067 Ph: (02) 9910 6200

316793

Law Roceived: 17/2/23 Time Received: 1400

Received By: & Temp: Cool/Ambient

Cooling: ice/cepark

Security: Intact/Broken/None

Head Office Suite 201, Level 2, 20 George Street Hornsby NSW 2077, Australia Ph 02 9476 9999 Fax 02 9476 8767

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Ali Kandil

Sample Login Details							
Your reference	P2208888: Gan Gan Road Anna Bay NSW						
Envirolab Reference	316793						
Date Sample Received	17/02/2023						
Date Instructions Received	17/02/2023						
Date Results Expected to be Reported	24/02/2023						

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	7 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	2
Cooling Method	Ice
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	All metals in water-dissolved	Hd	Electrical Conductivity	Calcium - Dissolved	Potassium - Dissolved	Sodium - Dissolved	Magnesium - Dissolved	Hardness	Hydroxide Alkalinity (OH-) as CaCO3	Bicarbonate Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Sulphate, SO4	Chloride, CI	Ionic Balance
MW08	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
MW09	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
BANAZAO													1	✓	
MW10	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	√	Y	✓
MW11	✓	√	√	√	√	√	√	√	√	√	√		√	∨	✓
		✓		✓		✓ ✓ ✓	✓	✓ ✓ ✓	✓ ✓ ✓		✓ ✓			∀ ✓	
MW11	✓	√ √	✓	✓	√	√	√	✓	✓ ✓ ✓	√	✓ ✓ ✓		√	✓ ✓ ✓	✓

The 'V' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 313617

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Dean Shi
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P2208888, Gan Gan Rd Anna Bay NSW
Number of Samples	8 Water
Date samples received	20/12/2022
Date completed instructions received	20/12/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	06/01/2023				
Date of Issue	06/01/2023				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/	IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By

Diego Bigolin, Inorganics Supervisor Loren Bardwell, Development Chemist Nick Sarlamis, Assistant Operation Manager **Authorised By**

Nancy Zhang, Laboratory Manager

Miscellaneous Inorganics						
Our Reference		313617-1	313617-2	313617-3	313617-4	313617-5
Your Reference	UNITS	MW01	MW02	MW03	MW04	MW05
Date Sampled		14/12/2022	14/12/2022	14/12/2022	14/12/2022	14/12/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	20/12/2022	20/12/2022	20/12/2022	20/12/2022	20/12/2022
Date analysed	-	20/12/2022	20/12/2022	20/12/2022	20/12/2022	20/12/2022
рН	pH Units	5.4	5.9	5.7	5.3	5.6
Electrical Conductivity	μS/cm	130	230	370	390	130

Miscellaneous Inorganics				
Our Reference		313617-6	313617-7	313617-8
Your Reference	UNITS	MW06	MW07	Dup01
Date Sampled		14/12/2022	14/12/2022	14/12/2022
Type of sample		Water	Water	Water
Date prepared	-	20/12/2022	20/12/2022	20/12/2022
Date analysed	-	20/12/2022	20/12/2022	20/12/2022
рН	pH Units	5.9	5.4	5.3
Electrical Conductivity	μS/cm	180	110	390

Ion Balance						
Our Reference		313617-1	313617-2	313617-3	313617-4	313617-5
Your Reference	UNITS	MW01	MW02	MW03	MW04	MW05
Date Sampled		14/12/2022	14/12/2022	14/12/2022	14/12/2022	14/12/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	20/12/2022	20/12/2022	20/12/2022	20/12/2022	20/12/2022
Date analysed	-	20/12/2022	20/12/2022	20/12/2022	20/12/2022	20/12/2022
Calcium - Dissolved	mg/L	2	13	13	2	9.7
Potassium - Dissolved	mg/L	1	7.4	5	3	3
Sodium - Dissolved	mg/L	18	19	29	46	8.3
Magnesium - Dissolved	mg/L	0.9	3	8.3	5.1	2
Hardness	mgCaCO 3 /L	8.7	44	66	27	34
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	10	22	23	7	19
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	10	22	23	7	19
Sulphate, SO4	mg/L	12	21	7	13	12
Chloride, Cl	mg/L	19	32	77	84	13
Ionic Balance	%	0	2.0	-1.0	-3.0	6.0

Ion Balance				
Our Reference		313617-6	313617-7	313617-8
Your Reference	UNITS	MW06	MW07	Dup01
Date Sampled		14/12/2022	14/12/2022	14/12/2022
Type of sample		Water	Water	Water
Date prepared	-	20/12/2022	20/12/2022	20/12/2022
Date analysed	-	20/12/2022	20/12/2022	20/12/2022
Calcium - Dissolved	mg/L	6.5	7.9	2
Potassium - Dissolved	mg/L	1	3	3
Sodium - Dissolved	mg/L	18	8.9	45
Magnesium - Dissolved	mg/L	4	0.9	5
Hardness	mgCaCO 3 /L	31	23	26
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	18	12	8
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	18	12	8
Sulphate, SO4	mg/L	5	8	13
Chloride, Cl	mg/L	33	13	85
Ionic Balance	%	0	9.0	-5.0

Our Reference		313617-1	313617-2	313617-3	313617-4	313617-5
Your Reference	UNITS	MW01	MW02	MW03	MW04	MW05
Date Sampled		14/12/2022	14/12/2022	14/12/2022	14/12/2022	14/12/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	22/12/2022	22/12/2022	22/12/2022	22/12/2022	22/12/2022
Date analysed	-	22/12/2022	22/12/2022	22/12/2022	22/12/2022	22/12/2022
Arsenic-Dissolved	μg/L	<1	9	<1	<1	4
Boron-Dissolved	μg/L	<20	30	20	20	<20
Barium-Dissolved	μg/L	2	5	13	9	7
Beryllium-Dissolved	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	0.1
Cobalt-Dissolved	μg/L	<1	<1	<1	<1	1
Chromium-Dissolved	μg/L	<1	<1	<1	<1	1
Copper-Dissolved	μg/L	2	6	2	5	2
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Manganese-Dissolved	μg/L	<5	17	6	<5	5
Molybdenum-Dissolved	μg/L	<1	9	<1	<1	36
Nickel-Dissolved	μg/L	<1	2	<1	<1	3
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Antimony-Dissolved	μg/L	<1	<1	<1	<1	2
Selenium-Dissolved	μg/L	<1	<1	<1	<1	<1
Tin-Dissolved	μg/L	<1	<1	<1	<1	<1
Zinc-Dissolved	μg/L	4	16	15	7	22

All metals in water-dissolved				
Our Reference		313617-6	313617-7	313617-8
Your Reference	UNITS	MW06	MW07	Dup01
Date Sampled		14/12/2022	14/12/2022	14/12/2022
Type of sample		Water	Water	Water
Date prepared	-	22/12/2022	22/12/2022	22/12/2022
Date analysed	-	22/12/2022	22/12/2022	22/12/2022
Arsenic-Dissolved	μg/L	<1	2	<1
Boron-Dissolved	μg/L	90	30	30
Barium-Dissolved	μg/L	2	1	9
Beryllium-Dissolved	μg/L	<0.5	<0.5	<0.5
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1
Cobalt-Dissolved	μg/L	<1	<1	<1
Chromium-Dissolved	μg/L	<1	<1	<1
Copper-Dissolved	μg/L	3	4	5
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05
Manganese-Dissolved	μg/L	5	28	<5
Molybdenum-Dissolved	μg/L	1	<1	<1
Nickel-Dissolved	μg/L	<1	4	<1
Lead-Dissolved	μg/L	<1	<1	<1
Antimony-Dissolved	μg/L	<1	<1	<1
Selenium-Dissolved	μg/L	<1	<1	<1
Tin-Dissolved	μg/L	<1	<1	<1
Zinc-Dissolved	μg/L	5	27	12

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 15% ie total anions = total cations +/-15%.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.

QUALITY CONTROL: Miscellaneous Inorganics						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			20/12/2022	1	20/12/2022	20/12/2022		20/12/2022	
Date analysed	-			20/12/2022	1	20/12/2022	20/12/2022		20/12/2022	
рН	pH Units		Inorg-001	[NT]	1	5.4	5.4	0	100	
Electrical Conductivity	μS/cm	1	Inorg-002	<1	1	130	130	0	100	[NT]

Envirolab Reference: 313617

Revision No: R00

QUALITY CONTROL: Ion Balance				Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	313617-2
Date prepared	-			20/12/2022	1	20/12/2022	20/12/2022		20/12/2022	20/12/2022
Date analysed	-			20/12/2022	1	20/12/2022	20/12/2022		20/12/2022	20/12/2022
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	2	2	0	96	93
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	1	1	0	96	91
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	18	18	0	93	81
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	0.9	0.9	0	97	98
Hardness	mgCaCO3/L	3	Metals-020	[NT]	1	8.7	8.2	6	[NT]	[NT]
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	10	10	0	[NT]	[NT]
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]
Total Alkalinity as CaCO₃	mg/L	5	Inorg-006	<5	1	10	10	0	95	[NT]
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	12	12	0	90	111
Chloride, Cl	mg/L	1	Inorg-081	<1	1	19	19	0	88	80
Ionic Balance	%		Inorg-040	[NT]	1	0	0		[NT]	[NT]

QUALITY CO	ONTROL: All m	etals in w	ater-dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	313617-2
Date prepared	-			22/12/2022	1	22/12/2022	22/12/2022		22/12/2022	22/12/2022
Date analysed	-			22/12/2022	1	22/12/2022	22/12/2022		22/12/2022	22/12/2022
Arsenic-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	93	93
Boron-Dissolved	μg/L	20	Metals-022	<20	1	<20	<20	0	104	93
Barium-Dissolved	μg/L	1	Metals-022	<1	1	2	2	0	99	94
Beryllium-Dissolved	μg/L	0.5	Metals-022	<0.5	1	<0.5	<0.5	0	120	114
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	95	94
Cobalt-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	99	97
Chromium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	94	91
Copper-Dissolved	μg/L	1	Metals-022	<1	1	2	2	0	96	94
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	1	<0.05	[NT]		89	[NT]
Manganese-Dissolved	μg/L	5	Metals-022	<5	1	<5	<5	0	96	98
Molybdenum-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	89	86
Nickel-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	91	90
Lead-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	100	89
Antimony-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	82	90
Selenium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	93	92
Tin-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	93	91
Zinc-Dissolved	μg/L	1	Metals-022	<1	1	4	5	22	96	103

Envirolab Reference: 313617 Page | 9 of 12 Revision No: R00

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Dissolved Metals:

- no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab. Note: there is a possibility some elements may be underestimated.

Envirolab Reference: 313617 Page | 12 of 12

Revision No: R00